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Rust’s basic idea to memory management

▶ Rust maintains that, for any live object,
1. there is one and only one pointer that “owns” it (the

owner pointer)
2. “multiple borrowers” : there are arbitrary number of

non-owning pointers (borrowing pointers) pointing to
it, but they cannot be dereferenced after the owning
pointer goes away

▶ ⇒ it can safely reclaim the data when the owning
pointer goes away

“single-owner-multiple-borrowers rule”

own
borrow

borrow
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The rules are enforced statically

▶ Rust enforces the rules (or, detect violations thereof)
statically (as opposed to dynamically)
▶ compile-time rather than at runtime
▶ before execution not during execution

“borrow checker”
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Ways outside the basic rules

to be sure, there are some ways to get around the rules

1. reference counting pointers (≈ multiple owning
pointers)
▶ counts the number of owners at runtime, and reclaim

the data when all these pointers are gone

2. unsafe/raw pointers (≈ totally up to you)

they are not specific to Rust, and we’ll not cover them in
the rest of this slide deck
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Pointer-like data types in Rust

given a type T (i32, struct, enum, . . . ), below are types
representing “references (pointers) to T”1

1. T : owning pointer to T

2. Box<T> (box T ) : owning pointer to T

3. &T (pronounced “ref T”) : borrowing pointer to data
of T (through which you cannot modify it)

4. Rc<T> and Arc<T> : shared (reference-counting)
owning pointer to T

5. *T : unsafe pointer to T

following discussions are focused on T , Box<T> and &T .

T or Box<T>
&T

&T

1we use pointers and references interchangeably
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Pointer-making expressions

given an expression e of type T , below are expressions that
make pointers to the value of e

1. e (of type T ) : an owning pointer

2. Box::new(e) (of type Box<T>) : an owning pointer

3. &e (of type &T ) : a borrowing pointer
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An example

�
1 {

2 let a: S = S{x: ...}; // allocate memory for S

3 // and make a owning pointer to it
4 let b: S = a; // an owning pointer
5 let c: Box<S> = Box::<S>::new(a); // an owning pointer
6 let d: &S = &a; // a borrowing pointer
7 }

▶ note: type of variables can be omitted (spelled out for
clarity)

▶ note: the above program violates several rules so it
does not compile
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Assignments of owning pointers

▶ to maintain the “single-owner” rule, an assignment of
owning pointers in Rust does not copy, but moves it
out of the righthand side, disallowing further use of it

x = y;

// y can no longer be used

▶ e.g.,

fn foo() {
let a = S{x: ..., y: ...};

}

a
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Argument-passing also moves the reference

▶ passing a value to a function also moves the reference
out of the source

fn foo() {
let a = S{x: ..., y: ...};
... a.x ...; // OK, as expected
... a.y ...; // OK, as expected

}

afoo
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Argument-passing also moves the reference

▶ passing a value to a function also moves the reference
out of the source

fn foo() {
let a = S{x: ..., y: ...};
... a.x ...; // OK, as expected
... a.y ...; // OK, as expected
// moves the reference out of a
f(a);

a.x; // NG, the reference has moved
}

afoo

xf(x)

13 / 56



Exceptions to “assignment moves the reference”

▶ you may think the moving assignment
x = y;

// y can no longer be used

contradicts what you have seen
▶ if it applies everywhere, does the following program

violate it?
fn foo() -> f64 {
let a = 123.456;

// does the reference to 123.456 move out from a!?
let b = a;

a + 0.789 // if so, is this invalid!?
}

▶ answer: no, it does not apply to primitive types like
i32, f64, etc.

▶ a more general answer: it does not apply to data types
that implement Copy trait
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Copy trait

▶ define your struct with #[derive(Copy, Clone)] like�
1 #[derive(Copy, Clone)]

2 struct S { ... }

▶ and assignment or argument-passing of S makes a copy
of the righthand side

fn foo() {
let a = S{x: ..., y: ...};
a.x; // OK, as expected
a.y; // OK, as expected

}

a
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1 #[derive(Copy, Clone)]

2 struct S { ... }

▶ and assignment or argument-passing of S makes a copy
of the righthand side

fn foo() {
let a = S{x: ..., y: ...};
a.x; // OK, as expected
a.y; // OK, as expected
// the value is copied
let b = a;

a.x; // OK
b.x; // OK, too

}

a

b
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Copy types and the single-owner rule

▶ when a copy is made on every assignment or argument
passing, the single-owner rule is trivially maintained

▶ below, we will only discuss types not implementing
Copy trait (non-Copy types)
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Box<T> makes an owning pointer

▶ making a pointer by Box::new(v) moves the reference
out of v, too, and Box::new(v) becomes the owning
pointer

fn foo() {
let a = S{x: ..., y: ...};
a.x; // OK, as expected
a.y; // OK, as expected

}

a
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Box<T> makes an owning pointer

▶ making a pointer by Box::new(v) moves the reference
out of v, too, and Box::new(v) becomes the owning
pointer

fn foo() {
let a = S{x: ..., y: ...};
a.x; // OK, as expected
a.y; // OK, as expected
// OK, now o is the owning pointer
let b = Box::new(a)

a.x; // NG, the value has moved out
(*b).x; // OK
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}

a

b
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Difference between T and Box<T>?

▶ as you have seen, the effect of�
1 let b = a;

and�
1 let b = Box::new(a);

look identical

▶ as far as data lifetime is concerned, it is in fact safe to
say T and Box<T> are identical

▶ Rust have the distinction for
▶ specifying data layout
▶ specifying where data are allocated (stack vs. heap)
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Data layout differences between T and Box<T>

▶ S and U below have different data layouts
▶ struct S { ..., p:T, } “embeds” a T into S
▶ struct U { ..., p:Box::<T>, } has p point to a

separately allocated T
S

Tp:

U

T

Box<T>p:

▶ in particular, Box<T> is essential to define recursive
data structures
▶ struct S { ..., p:S, } is not allowed, whereas
▶ struct U { ..., p:Box<U>, } is

▶ note: U above can never be constructed; a recursive
data structure typically looks like struct U { ...,

p:Option<Box<U>>, }
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Data layout differences between T and Box<T>

▶ the distinction is insignificant when discussing lifetimes
S

Tp:

U

T

Box<T>p:

▶ in both cases, data of T (yellow box) is gone exactly
when the enclosing structure is gone

▶ Rust spec also says it allocates T on stack and move it
to heap when Box<T> is made

▶ again, it has nothing to do with lifetime (unlike
C/C++)
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A (huge) implication of the single-owner rule

▶ with only owning pointers (T and Box<T>),
▶ you can make a tree of T ,
▶ but you cannot make a general graph of T (acyclic or

cyclic), where a node may be pointed to by multiple
nodes

▶ if you want to make a graph of T , you use either
▶ &T to represent edges, or
▶ Vec<T> to represent nodes and Vec<(i32,i32)> to

represent edges

21 / 56



The (huge) implication to memory management

▶ if there are only owning pointers (i.e., no borrowing
pointers)

▶ whenever an owning pointer is gone (e.g.,
▶ a variable goes out of scope or
▶ a variable or field is overwritten),

the entire tree rooted from the pointer can be safely
reclaimed
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Basics

▶ you can make any number of borrowing pointers to T
(&T ) from T or Box<T>

▶ both the owning pointer and borrowing pointers can
be used at the same time�

1 let a = S{x: .., y: ..};

2 let b = &a;

3 ... a.x + b.x ... // OK

▶ the issue is how to prevent a program from
dereferencing borrowing pointers after its owning
pointer is gone
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Borrowers rule in action

▶ a borrowing pointer cannot be dereferenced after its
owning pointer is gone
fn foo() -> i32 {
let c: &S; // a reference to S
{ // an inner block

}

}

c : &S
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A mutable borrowing reference (&mut T )

▶ you cannot modify data of type T through ordinary
borrowing references &T�

1 let a : S = S{x: 10, y: 20};

2 let b : &S = &a;

3 b.x = 100; // NG

▶ they are immutable references

▶ you can modify data only through a mutable reference
(&mut T )�

1 let mut a : S = S{x: 10, y: 20};

2 let b : &mut S = &mut a;

3 b.x = 100; // OK

▶ the differene is largely orthogonal to memory
management

26 / 56



Contents

Overview

Rust basics

Owning pointers
Assignments of owning pointers
Box<T> type

Borrowing pointers (&T )

Borrow checking details

Summary

27 / 56



A technical remark about borrowers rule

▶ it’s not a creation of a dangling pointer, per se, that is
not allowed, but dereferencing of it

▶ a slightly modified code below compiles without an
error, despite that c becomes a dangling pointer to a

(as it is not dereferenced past a’s lifetime)
fn foo() -> i32 {
let c: &S; // a reference to S
{ // an inner block
let b: &S; // another reference
let a = S{x: ...}; // allocate S
// OK (both a and b live only until the end of the inner block)
b = &a;

c = b; // dangerous (c outlives a)
}// a dies here, making c a dangling pointer
// c.x don’t deref c

}
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A more precise statement of borrowers rule

1. for each borrowing reference (&T or &mut T type),
Rust compiler determines the lifetime of data it points
to (referent lifetime) as part of its static type

2. assignment between borrowing pointers (p = q) equate
their referent lifetimes

3. dereferencing a borrowing pointer p (e.g., p.x) is
allowed only within the p’s referent lifetime

fn foo() -> i32 {
let c: &S; // → ??
{
let b: &S; // → ??
let a = S{x: ...};
b = &a;

c = b;

} // a dies here (α)
c.x

} 29 / 56



A more precise statement of borrowers rule

1. for each borrowing reference (&T or &mut T type),
Rust compiler determines the lifetime of data it points
to (referent lifetime) as part of its static type

2. assignment between borrowing pointers (p = q) equate
their referent lifetimes

3. dereferencing a borrowing pointer p (e.g., p.x) is
allowed only within the p’s referent lifetime

fn foo() -> i32 {
let c: &S; // → ??
{
let b: &S; // → ??
let a = S{x: ...};
b = &a;

c = b;

} // a dies here (α)
c.x

} 29 / 56



A more precise statement of borrowers rule

1. for each borrowing reference (&T or &mut T type),
Rust compiler determines the lifetime of data it points
to (referent lifetime) as part of its static type

2. assignment between borrowing pointers (p = q) equate
their referent lifetimes

3. dereferencing a borrowing pointer p (e.g., p.x) is
allowed only within the p’s referent lifetime

fn foo() -> i32 {
let c: &S; // → ??
{
let b: &S; // → α
let a = S{x: ...}; // lives until α
b = &a; // b’s referent lifetime = a’s lifetime
c = b;

} // a dies here (α)
c.x

} 29 / 56



A more precise statement of borrowers rule

1. for each borrowing reference (&T or &mut T type),
Rust compiler determines the lifetime of data it points
to (referent lifetime) as part of its static type

2. assignment between borrowing pointers (p = q) equate
their referent lifetimes

3. dereferencing a borrowing pointer p (e.g., p.x) is
allowed only within the p’s referent lifetime

fn foo() -> i32 {
let c: &S; // → α
{
let b: &S; // → α
let a = S{x: ...}; // lives until α
b = &a; // b’s referent lifetime = a’s lifetime
c = b; // c’s referent lifetime = b’s referent lifetime

} // a dies here (α)
c.x

} 29 / 56



A more precise statement of borrowers rule

1. for each borrowing reference (&T or &mut T type),
Rust compiler determines the lifetime of data it points
to (referent lifetime) as part of its static type

2. assignment between borrowing pointers (p = q) equate
their referent lifetimes

3. dereferencing a borrowing pointer p (e.g., p.x) is
allowed only within the p’s referent lifetime

fn foo() -> i32 {
let c: &S; // → α
{
let b: &S; // → α
let a = S{x: ...}; // lives until α
b = &a; // b’s referent lifetime = a’s lifetime
c = b; // c’s referent lifetime = b’s referent lifetime

} // a dies here (α)
c.x

} 29 / 56



A more precise statement of borrowers rule

1. for each borrowing reference (&T or &mut T type),
Rust compiler determines the lifetime of data it points
to (referent lifetime) as part of its static type

2. assignment between borrowing pointers (p = q) equate
their referent lifetimes

3. dereferencing a borrowing pointer p (e.g., p.x) is
allowed only within the p’s referent lifetime

fn foo() -> i32 {
let c: &S; // → α
{
let b: &S; // → α
let a = S{x: ...}; // lives until α
b = &a; // b’s referent lifetime = a’s lifetime
c = b; // c’s referent lifetime = b’s referent lifetime

} // a dies here (α)
c.x // NG (deref outside c’s referent lifetime = α)

} 29 / 56



Programming with borrowing references

▶ programs using borrowing references must help
compilers track their referent lifetimes

▶ this must be done for functions called from unknown
places, function calls to unknown functions and data
structures

▶ to this end, the programmer sometimes must annotate
reference types with their referent lifetimes
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References in function parameters

▶ problem: how to check the validity of functions taking
references�

1 fn p_points_q(p: &mut P, q: &Q) {

2 p.x = q; // OK?
3 }

without knowing all its callers, and function calls
passing references�

1 let c = ...;

2 {

3 let a = Q{...};

4 let b = &a;

5 f(c, b);

6 }

7 ... c.x.y ... // OK?

without knowing the definition of f?
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References in function return values

▶ problem: how to check the validity of functions
returning references�

1 fn return_ref(...) -> &P {

2 ...

3 let p: &P = ...

4 ...

5 p // OK?
6 }

without knowing its all callers, and function calls
receiving references from function calls�

1 fn receive_ref() {

2 ...

3 let p: &P = return_ref(...);

4 ...

5 p.x // OK?
6 }
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References in data structures

▶ problem: how to check the validity of dereferencing a
pointer obtained from a data structure�

1 fn ref_from_struct() {

2 ...

3 let p: &P = a.p;

4 ...

5 p.x // OK?
6 }

▶ what about functions taking data structures containing
references and returning another containing references,
etc.?
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Reference type with a lifetime parameter

▶ to address this problem, Rust’s borrowing reference
types (&T or &mut T ) carry lifetime parameter
representing their referent lifetimes

▶ syntax:
▶ &’a T : reference to “T whose lifetime is ’a”
▶ &’a mut T : ditto; except you can modify data

through it

T

lives until 'a

▶ every reference carries a lifetime parameter, though
there are places you can omit them

▶ roughly, you must write them explicitly in function
parameters, return types, and struct/enum fields; and
can omit them for local variables
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Attaching lifetime parameters to functions

▶ the following does not compile�
1 fn foo(ra: &i32, rb: &i32, rc: &i32) -> &i32 {

2 ra

3 }

▶ with errors like�
1 |

2 | fn foo(ra: &i32, rb: &i32, rc: &i32) -> &i32 {

3 | ---- ---- ---- ^ expected named lifetime parameter

4 |

5 = help: this function’s return type contains a borrowed value, but the signature does not

say whether it is borrowed from ‘ra‘, ‘rb‘, or ‘rc‘

6 help: consider introducing a named lifetime parameter

7 |

8 | fn foo<’a>(ra: &’a i32, rb: &’a i32, rc: &’a i32) -> &’a i32 {

9 | ++++ ++ ++ ++ ++
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Why do we need an annotation, fundamentally?

▶ without any annotation, how to know whether this is
safe, without knowing the definition of foo?�

1 {

2 let r : &i32;

3 let a = 123;

4 {

5 let b = 456;

6 {

7 let c = 789;

8 r = foo(&a, &b, &c);

9 }

10 }

11 *r

12 }

▶ essentially, the compiler complains “tell me what kind
of lifetime foo(&a, &b, &c) has”
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Attaching lifetime parameters to functions

▶ syntax:�
1 fn f<’a,’b,’c,...>(p0 : T0, p1 : T1, ...) -> Tr { ... }

T0, T1, · · · and Tr may use ’a, ’b, ’c, ... as
lifetime parameters (e.g., &’a i32)

▶ f<’a,’b,’c,...> is a function that takes parameters
of respective lifetimes
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One way to attach lifetime parameters
▶�
1 fn foo<’a>(ra: &’a i32, rb: &’a i32, rc: &’a i32) -> &’a i32

▶ effect: the return value is assumed to point to the
shortest of the three

▶ why? generally, when Rust compiler finds foo(x, y,
z), it tries to determine ’a so that it is contained in
the lifetime of all (x, y and z)

▶ as a result, our program does not compile, even if
foo(&a, &b, &c) in fact returns &a�

1 {

2 let r: &i32;

3 let a = 123;

4 {

5 let b = 456;

6 {

7 let c = 789;

8 r = foo(&a, &b, &c); // ’a ← shortest of {α, β, γ} = γ
9 // and r’s type becomes &γ i32

10 } // c’s lifetime (= γ) ends here
11 } // b’s lifetime (= β) ends here
12 *r // NG, as we are outside γ
13 } // a’s lifetime (= α) ends here
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An alternative
▶�
1 fn foo<’a,’b,’c>(ra: &’a i32, rb: &’b i32, rc: &’c i32) -> &’a i32

▶ signifies that the return value points to data whose
lifetime is ra’s referent lifetime (and has nothing to do
with rb’s or rc’s)

▶ for foo(x, y, z), Rust compiler tries to determine ’a

so it is contained in the lifetime of x’s referent
(therefore ’a = α)

▶ as a result, the program we are discussing compiles�
1 {

2 let r: &i32;

3 let a = 123;

4 {

5 let b = 456;

6 {

7 let c = 789;

8 r = foo(&a, &b, &c); // ’a → shortest of {α} = α
9 // and r’s type becomes &α i32

10 } // c’s lifetime (= γ) ends here
11 } // b’s lifetime (= β) ends here
12 *r // OK, as here is within α
13 } // a’s lifetime (= α) ends here
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Types with lifetime parameters capture/constrain

the function’s behavior

▶ what if you try to fool the compiler by�
1 fn foo<’a,’b,’c>(ra: &’a i32, rb: &’b i32, rc: &’c i32) -> &’a i32

2 rb

3 }

▶ the compiler rejects returning rb (of type &’b) when
the function’s return type is &’a

▶ in general, the compiler allows assignments only
between references having the same lifetime parameter
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Another example (make a reference between

inputs)

▶ what if we rewrite�
1 r = foo(&a, &b, &c);

into�
1 bar(&mut r, &a, &b, &c);

with bar something like�
1 fn bar(r: &mut &i32, a: &i32, b: &i32, c: &i32) {

2 *r = a;

3 }
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Make a reference between inputs

▶ how to specify lifetime parameters so that

1. *r = a; in bar’s definition is allowed, and
2. we can dereference *r at the end of the caller?�

1 {

2 let a = 123;

3 let mut r = &0;

4 {

5 let b = 456;

6 {

7 let c = 789;

8 bar(&mut r, &a, &b, &c); // r → ???

9 } // c’s lifetime (= γ) ends here
10 } // b’s lifetime (= β) ends here
11 *r // OK???
12 } // a’s lifetime (= α) ends here
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Answer

▶ again, we need to signify r points to a (and not b or c
after bar(&r, &a, &b, &c)

▶ a working lifetime parameter is the following�
1 fn bar<’a,’b,’c>(r: &mut &’a i32, a: &’a i32,

2 b: &’b i32, c: &’c i32) {

3 *r = a;

4 }
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References in data structures

▶ problem: how to check the validity of programs using
data structure containing a borrowing reference�

1 struct R {

2 p: &i32

3 ...

4 }

and functions returning R�
1 fn ret_r(a: &i32, b: &i32, c: &i32) -> R {

2 R{p: a}

3 }

or taking R (or reference to it)�
1 fn take_r(r: &mut R, a: &i32, b: &i32, c: &i32) {

2 r.p = a;

3 }
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References in data structures

▶ you cannot simply have a field of type &T in
struct/enum like this�

1 struct R {

2 p: &i32

3 ...

4 }

▶ you need to specify the lifetime parameter of p, and let
R take the lifetime parameter�

1 struct R<’a> {

2 p: &’a i32

3 ...

4 }

▶ R<’a> represents R whose p field points i32 whose
lifetime is ’a

▶ this way, a structure containing borrowing references
exposes there referent lifetimes to its user
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Attaching lifetime parameters to data structure

▶ say we like to have data structures�
1 struct T { x: i32 }

2 struct S { p: &T }

and a function�
1 fn make_s(a: &T, b: &T) -> S { S{p: a} }

so that the following compiles�
1 let s;

2 let a = T{...};

3 {

4 let b = T{...};

5 s = make_s(&a, &b);

6 }

7 s.p.x

▶ the compiler needs to verify s.p points to a, not b

▶ we have to signify that by appropriate lifetime
parameters
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Answer

▶ define S<’a> so
▶ its p’s referent lifetime is ’a�

1 struct S<’a> { p: &’a T }

▶ define make s so it returns S<’a> where ’a is the
referent lifetime of its first parameter�

1 fn make_s(a: &’a T, b: &’b T) -> S<’a> {

2 S{p: a}

3 }
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A more complex example Rust cannot verify

▶ say we now have data structures�
1 struct T { x: i32 }

2 struct S {

3 p: &T,

4 q: &T

5 }

and a function�
1 fn make_s(a: &T, b: &T) -> S { S{p: a, q: b} }

so that the following compiles�
1 let s;

2 let a = T{...};

3 {

4 let b = T{...};

5 s = make_s(&a, &b);

6 }

7 s.p.x

▶ again, the compiler needs to verify s.p points to a, not
b
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Answer that I thought should work but doesn’t

▶ define S so
▶ its p points to T of lifetime ’a and
▶ its q points to T of lifetime ’b�

1 struct S<’a, ’b> {

2 p: &’a T,

3 q: &’b T

4 }

▶ define make s so it returns S<’a, ’b> where ’a is the
lifetime of its first parameter, like�

1 fn make_s(a: &’a T, b: &’b T) -> S<’a, ’b> {

2 S{p: a, q: b}

3 }
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The compiler complains�
1 [E0597] Error: ‘b‘ does not live long enough

2 [command_36:1:1]

3 16 │ s = make_s(&a, &b);

4 . ---

5 . +--- borrowed value does not live long enough

6 17 │ }

7 . _

8 . +--- ‘b‘ dropped here while still borrowed

9 18 │ s.p.x

10 . -----

11 . +----- borrow later used here

12

▶ I don’t know what is the exact spec of Rust that rejects
this program, but it is apparently that Rust disallows
dereference of any struct any lifetime parameter of
which is invalid at the point of dereference

▶ in this example, s : S<’a,’b> and one of its lifetime
parameters (’b) is invalid at line 18

50 / 56



Contents

Overview

Rust basics

Owning pointers
Assignments of owning pointers
Box<T> type

Borrowing pointers (&T )

Borrow checking details

Summary

51 / 56



Why memory management is difficult

▶ every language wants to prevent dereferencing a
pointer to an already-reclaimed memory block (dangling
pointer)

▶ the problem would have been trivial if you could
reclaim v’s referent as soon as v goes out of scope

▶ this is not the case, as v’s referent may still be
reachable from other variables when v goes out of scope

{
let v = T{x: ...};
...

} v
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pointer to an already-reclaimed memory block (dangling
pointer)

▶ the problem would have been trivial if you could
reclaim v’s referent as soon as v goes out of scope

▶ this is not the case, as v’s referent may still be
reachable from other variables when v goes out of scope

let p : &T;

{
let v = T{x: ...};
...

p = &v;

} // v never used below, but its referent is
... p.x ...

v

p !
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C vs. GC vs. Rust

▶ C/C++ : it’s up to you

▶ GC : if it is reachable from other variables, I retain it
for you

▶ Rust : when v goes out of scope,

1. I reclaim Tv, all data reachable from v through owning
pointers

2. Tv may be reachable from other variables via
borrowing references, but I guarantee such references
are never dereferenced

C/C++ GC Rust

v

p

!
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How Rust achieved it?

▶ say two data structures Tv rooted at variable v and Tp

rooted at variable p

▶ assume v goes out of scope earlier than p

▶ we wish to guarantee when v goes out of scope, it is
safe to reclaim the entire Tv

▶ generally it is of course not the case, as there may be
pointers somewhere in Tp → somewhere in Tv

time

Tv

v (goes out of scope here)

p (goes out of scope here)
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How Rust achieved it?

▶ say two data structures Tv rooted at variable v and Tp

rooted at variable p

▶ assume v goes out of scope earlier than p

▶ we wish to guarantee when v goes out of scope, it is
safe to reclaim the entire Tv

▶ generally it is of course not the case, as there may be
pointers somewhere in Tp → somewhere in Tv

time

Tv

v (goes out of scope here)

p (goes out of scope here)

????

Tp
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How Rust achieved it?

▶ recall the “single-owner rule,” which guarantees there
is only one owning pointer to any node

▶ ⇒ there can be no owning pointers from outside Tv to
inside Tv

▶ ⇒ any such pointer must be a borrowing pointer

▶ crucially, a borrowing pointer must have a lifetime
parameter (lifetime of the referent); say ’a

time

Tv

v (goes out of scope here)

p (goes out of scope here)
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How Rust achieved it?

▶ any structure containing borrowing pointers must carry
these parameters too, as part of its type (e.g., S<’a>)

▶ assignment to such borrowing pointers determines ′a to
end when the righthand side goes out of scope (α in
the figure)

▶ by ’a = α, the containing data structure (Tp, of type
S<’a>) cannot be dereferenced

time

x : &'a ...

α

Tv

v (goes out of scope here)

'a = lifetime of Tv = α

p (goes out of scope here)
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