
Programming Language (7)
Garbage Collection

田浦

1 / 1



Contents

2 / 1



Contents

3 / 1



Evaluating GCs

1. preciseness:
▶ garbage that can be collected

2. memory allocation cost:
▶ the work (including GC) required to allocate memory

3. pause time:
▶ the (worst case) time the mutator has to (temporarily)

suspend for GC to function

4. mutator overhead:
▶ the overhead imposed on the mutator for GC to function
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Criteria #1: preciseness

▶ reference counting cannot reclaim cyclic garbage

▶ reference count < traversing GC (traversing GC is better)
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Criteria #2: memory allocation cost

▶ difficult to say in a few words (more details ahead)

▶ traversing GC:
▶ the cost is determined by the ratio “reachable objects” /

“unreachable (reclaimed) objects” (later)
▶ totally depending on apps and memory size, it can be

anywhere from the minimum to infinity
▶ an advanced technique: generational GC

▶ reference counting:
▶ the cost of reclaiming an object once its RC drop to zero is

small and constant
▶ it is constant even if memory is scarce (good)
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Criteria #3: pause time

▶ reference counting < traversing GC (reference counting is
better)

▶ traversing GC:
▶ traverse all live objects, en masse, and reclaim all

unreached objects, en masse
▶ do a whole bunch of work and get a whole bunch of free

blocks

▶ why so? troubled if the mutator runs (= changes the graph
of objects) during traversing

▶ a solution: incremental GC
▶ generational GCs mitigate it too

▶ reference counting:
▶ when an object’s RC drops to zero (as a result of mutator’s

action), it can be reclaimed immediately
▶ reclaim garbage as they arise
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Criteria #4: mutator overhead

▶ traversing < reference counting (traversing GC is better)

▶ reference counting has a large overhead for updating RCs�
1 object * p, * q;

2 p = q;

will do:�
1 if (p) p->rc--;

2 if (q) q->rc++;

3 p = q;

Moreover,
▶ what about multithreaded programs?
▶ what if the counter overflows (how to check it)?

▶ techniques: deferred reference counting, sticky reference
counting, 1 bit reference counting

▶ remark: some traversing GCs (e.g., generational and
incremental) add overhead to pointer updates too
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Summary

traversing reference counting

preciseness + −
allocation cost ? (∗) +
pause time − (†) +
mutator overhead + (‡) −

(∗) depends on size of reachable graph and memory;
generational garbage collector helps

(†) incremental garbage collector helps

(‡) both generational and incremental garbage collectors
impose some mutator overheads
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mark&sweep GC vs. copying GC

they differ in what to do on reachable objects

▶ mark&sweep GC: mark them as “visited”

▶ copying GC: copy them into a distinct (contiguous) region
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Mark&sweep GC

1. mark-phase:
▶ traverses objects from the root, marking objects it

encounters
▶ maintains mark stack (not shown in the figure), marked

objects whose children may have not been marked (= light
gray objects)

2. sweep phase:
▶ reclaims all memory blocks that were not visited
▶ free memory blocks are not contiguous, so must be managed

by an appropriate data structure (free lists)

root
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Copying GC

▶ in essence, ≈ copying a graph (≈ serialization)
▶ the same pointers must remain the same after the copy

▶ semi-space GC (copy all objects reachable from the root
into another space)
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to space

from space
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Copying GC: algorithm

�
1 void *free, *scan;

2 copy_gc() {

3 free = scan = to_space;

4 redirect_ptrs(root);

5 while (scan < free) {

6 redirect_ptrs(scan);

7 scan += the size of object scan points to;
8 }

9 }

10 redirect_ptrs(void * o) {

11 for (p ∈ pointers in o) {

12 if (p has been copied) {

13 p = p’s forward pointer;
14 } else {

15 copy p to free;

16 p = free;

17 p’s forward pointer = free;

18 free += the size of object p points to;
19 }

20 }

21 }

invariant

▶ p < scan ⇒ p has been
reached; so has its
direct children

▶ p < free ⇒ p has been
reached; but its children
may not
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Mark&sweep vs. copying GC

▶ copying GC pros:
▶ live objects occupy a contiguous region after a GC
▶ → the free region becomes contiguous too
▶ → the overhead for memory allocation is small (no need to

“search” the free region)

▶ copying GC cons:
▶ copy is expensive, obviously
▶ the free region must be reserved to accommodate objects

copied (low memory utilization)
▶ must ensure “size of objects that may be copied” ≤ “size of

the region to copy them into”
▶ → “from space” = “to space”

▶ pointers must be “precisely” distinguished from
non-pointers (ambiguous pointers are not allowed)

▶ pointers are updated to the destinations of copies
▶ a disaster occurs if you update non-pointers
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Memory allocation cost of traversing GCs

▶ let’s quantify the cost of allocating a byte including GC’s
work

▶ assume:
▶ heap size (size of a semi-space in case of copying GC) = M
▶ reached objects = r
▶ assume for the sake of argument it’s always r

▶ behavior at equilibrium: the program repeats:
1. a GC occurs → scan (or copy) r bytes, to make a free space

of (M − r) bytes
2. allocate (M − r) bytes without triggering a GC

▶ a key observation
the time (cost) of a single GC is roughly proportional to
the amount of reached objects (i.e., ∝ r)

  M
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Memory allocation cost of traversing GCs

  M

r (M - r) 

∴ the cost of allocating a byte

▶ α : a constant cost needed anyway, even if you don’t need
to reclaim memory at all

▶ β : an average cost to examine a single byte
▶ copy it (in a copying GC)
▶ see if it is a pointer to an unvisited object
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Note on copying GC vs mark-sweep GC

▶ the key observation
the time (cost) of a single GC is roughly proportional to
the amount of reached objects (i.e., ∝ r)

ignores the cost of so-called “sweep phase”
▶ a more accurate quantification will be

the time (cost) of a single GC ≈ βr + γ(M − r),

which adds a constant (γ) to an allocation cost per byte,
which any memory allocator will incur anyway

▶ i.e., the cost will be

α+
βr + γ(M − r)

M − r

= α+ γ + β
r

M − r
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Memory allocation cost of traversing GCs

▶ important formula:

allocation cost per byte ∝ const. +
r

M − r

▶ r/(M − 1) is often called mark-cons ratio. its origin:
▶ mark : the amount of work to mark reachable objects
▶ cons : the synonym of memory allocation in the ancient

Lisp language =(cons x y)
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Memory allocation cost of traversing GCs

cost per byte ∝ const. +
r

M − r

▶ r (primarily) depends only on app (not dependent of GCs)
▶ remark: r may fluctuate depending on “when” GCs occur

▶ M is an adjustable parameter (up to GC’s choice)

▶ M is large → the cost is small

▶ → you can reduce the cost by making M (memory usage)
larger

▶ may sound obvious, but remember that what is important
is the cost per allocation (byte), not the frequency of GCs
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How large do we make M (memory usage)?

▶ alright, the larger we make M , the smaller the cost
becomes
▶ → why don’t we make it arbitrarily large (up to physical

memory)?

▶ we normally set M “modestly”, like:

M ∝ r

e.g., choose a constant k > 1 and set:

M = kr

▶ a GC measures the amount of reachable objects to get r
and set M according to the above formula
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How large do we make M (memory usage)?

▶ in this setting,
▶ cost:

mark-cons ratio =
r

kr − r
=

1

k − 1

▶ memory usage

∝ the size of reachable objects at a point during execution

both are “reasonable”

▶ most GCs allow you to set k (or M directly)

▶ normally, k = 1.5 ∼ 2, but it is worth knowing that you can
reduce the cost by setting it large
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Generational GC: introduction

▶ objective: reduce mark-cons ratio in traversing GCs

▶ how: traverse and reclaim only recently created objects
(young generation)
▶ traverse only young generations often
▶ traverse the entire heap occasionally when it does not

reclaim enough space

▶ why does it work?
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mark-cons ratio (review)

GC overhead

≡ GC’s work per allocating a byte

▶ the less reachable space there are, the smaller it becomes

▶ below, we simply say an object is “alive” when it is
“reachable from the root” (strictly, not a correct usage)
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Generational GC: the basic idea

▶ basic idea: traverse (collect) only a region that has a lesser
live object ratio

  
heap

unreachable
=space to be reclaimed
=available for allocation

reachable
= GC's work

▶ two problems:

1. where to target: which region has a lesser live object ratio?
2. correctness: how to find all live objects in a region, by

traversing “only” that region?
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Problem 1: where generational GC targets

a region holding young (recently created) objects
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Problem 1: where generational GC targets

a region holding young (recently created) objects

Q: why (or when) is this effective?
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(Weak) generational hypothesis

▶ “most objects die young”

▶ it seems to hold in most languages (where all memory
allocations are served from the heap)

  

寿命

頻度(確率密度)

15
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Studies on (weak) generational hypothesis

▶ studies show “a (large) fraction d of objects die before a
(young) age y” in various languages
▶ note: an “age” of an object o = the total size of memory

allocated after o is created (that is, the time is measured by
the amount of memory allocation)

authors lang. mortality rate (d) age (y)

Zorn Common Lisp 50-90% 10KB
Sanson and Jones Haskell 75-95% 10KB
Hayes Cedar 99% 721KB
Appel SML/NJ 98% varies
Barret and Zorn C 50% 10KB

C 90% 32KB

source: Richard Jones and Rafael Lins. “Garbage Collection.
Algorithms for Automatic Memory Management” Chapter 7.1
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“most objects die young” and a rational of generational
GCs

▶ say 90% die younger than 10KB, then

mark-cons ratio when traversing most recent 10KB ≈ 0.1

▶ if we use heap 2-3 times larger than the live objects,

the ratio when traversing the entire heap ≈ 1/3～1/2 > 0.1
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Problem 2: how to make it correct?

▶ we need to find all young objects reachable from the root,
through “all pointers, young or old”

▶ simply ignoring old objects won’t work

  

▶ solution: record “all” pointers from “old → young” during
the execution and consider them as part of the root

▶ note: some may not be reclaimed, despite being
unreachable from the root
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Write barrier

▶ an intervention in mutator actions to capture all “old →
young” pointers

▶ mutator actions that need an intervention: assignments:

(possibly) old object’s field ← (possibly) young object

▶ in OCaml,
expression description need intervention?
o.x <- a update a mutable field yes
{ x = ...; ...} create a record etc. no
let b = o.x initialize a variable no

▶ hopefully they rarely occur in “mostly functional”
languages
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Implementing Write Barrier (1) Remembered Set

▶ given�
1 o.x <- a;

we do�
1 if (generation(a) < generation(o)) {

2 if (o ̸∈ R) add(R, o)

3 }

▶ the overhead is large
▶ obtain generation(·) (address comparison in copying GC)
▶ check if o ∈ R
▶ manage R
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Implementing Write Barrier (2) Card Marking

▶ basic idea: unconditionally record addresses pointers are
written to

▶ partition the heap into constant-sized “cards”
▶ a card: a region whose addresses share a number of most

significant bits
▶ e.g., share the highest 57 of 64 bit addresses
▶ → a single card 27 = 128 bytes

ヒープ

▶ record only whether each card receives any pointer write (1
byte/card; card mark)
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The overhead of card-marking

▶ e.g.: given the following pointer update,�
1 o->x <- y;

unconditionally record “a card containing &o->x is written”�
1 C[(&o->x) >> 9] = 1;

C is the base address to obtain the card address. that is,�
1 C[heap >> 9] == card

...

e.g., 
128
バイト ヒープ

カードマーク

カード

1バイト
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Card-marking : Pros and Cons

▶ a small write barrier overhead (if you hold C in a register,
it takes three RISC instructions)�

1 C[(&o->x) >> 9] = 1;

▶ memory overhead adjustable by adjusting card size (e.g. a
card is 128 bytes → 1/128)

▶ you cannot efficiently list written cards; you must check all
cards (∝ heap)

▶ when any address of a card is written, we must consider all
addresses of the card a root
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Incremental GC

▶ objective: reduce the “pause time” of traversing GC
▶ good for applications that need real time or interactive

responses

▶ recall that pause time ≈ time to traverse all reachable
objects

▶ how: by traversing reachable objects “a little bit at a time”
▶ instead of traversing 1 GB in one stroke, traverse 10 MB at

a time, 100 times

  mutator
collectorcollector collector collector

mutator mutator

collector

インクリメンタルGC

通常の(stop-the-world)GC

collector mutator

t

allocation
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Challenges in incremental GC

▶ (from GC’s view point) the object graph changes while GC
is traversing it

  mutator
collectorcollector collector collector

mutator mutator

collector

インクリメンタルGC

通常の(stop-the-world)GC

collector mutator

t

allocation

▶ how to guarantee it does not miss any reachable object?

▶ ⇒ we’ll get back to the basics of graph traversal
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Assumptions for later discussions

▶ only a single mutator (the app is single-threaded)

▶ the mutator and the collector run “alternately” (not at the
same time)
▶ the collector does a little bit of its work upon a memory

allocation

▶ i.e., we do not consider race conditions that would happen
when they are truly concurrent
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Graph traversal : basics

▶ traversing GC ≈ graph traversal

▶ the principle is the same whether it’s mark&sweep or
copying

▶ omitting details, it is:�
1 F = { root };

2 while (F is not empty) {

3 o = pop(F);

4 for (all pointers p in o)

5 if (!marked(p)) {

6 mark(p);

7 add(F, p);

8 }

9 }

C

D

B

A
F

ルート
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Key data : the frontier

▶ F : frontier

▶ the set of objects that have been visited but whose children
may have not

▶ the actual data structure
▶ mark&sweep : mark stack
▶ copying : a part of the to space

mark stack

C

D

B

A

A
B
C
D

   A B C D
to space
from space

scan free

mark&sweep copying
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The issue that an incremental GC must address

�
1 F = { root };

2 while (F is not empty) {

3 o = pop(F);

4 for (all pointers p in o)

5 if (!marked(p)) {

6 mark(p);

7 add(F, p);

8 }

9 if (has iterated a few times)

10 // the graph changes below

11 resume mutator();

12 }

▶ ordinary GC: the while loop runs
until the end keeping the mutator
stopped → the object graph does
not change during the loop

▶ incremental GC:
▶ the collector gets interrupted by

the mutator every once in a
while

▶ . . . and continues after a while
▶ that is, the issues is how to do

with the fact that the graph
may change between iterations
of the while loop
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The tri-color abstraction

▶ likens a graph traversal to coloring its nodes
▶ visiting an object ≈ coloring an object

▶ black : the object and its children have been visited
▶ gray : it has been visited but its children may not

▶ white : it has not been visited

▶ the graph traversal using the tri-color abstraction�
1 gray the root;

2 while (there is a gray object) {

3 o = pick a gray object and blacken it;

4 for (all pointers in o)

5 if (p points to a white object)

6 gray it;

7 the mutator changes the graph; }

C

D

B

A
F

ルート

▶ correctness of the algorithm: when there are no gray
objects, all objects reachable from the root are black (i.e.,
white objects are unreachable)
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A problematic mutation to the graph

▶ intuitively, the issue seems the mutator
may create “black → white” pointers

▶ black : GC thinks it has “done” with
it

▶ white : going to be reclaimed, unless
found in other paths

▶ ⇒ prevent “black → white pointers”
from being created Frontier
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Two approaches to preventing black→white

capture the point where “ black → white ” is about to be
created

1. approach #1: gray the white (make

black → gray )

▶ pros: the frontier always progresses
▶ pros: easier to work with for copying GCs
▶ cons: reclaim less objects. if p becomes

unreachable due to another update to o, it
won’t be reclaimed (by the current GC)

2. approach #2: get the black back to gray

(make gray → white )

▶ pros: reclaim more objects
▶ cons: the frontier retreats

Frontier

Frontier
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Mutator actions that need to be captured

naively all pointer movements must be captured

▶ write a pointer into an object field (write barrier)�
1 o->x = p

▶ write a pointer into a root ≡ write a pointer to a variable
(read barrier)�

1 p = o->x

the latter is so frequent that some approaches avoid them
(example #2: Boehm GC)
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Example #1: Appel-Ellis-Li

▶ copying GC + incremental

▶ based on the approach # 1. more precisely, maintain the
following invariant
the mutator never sees a pointer to white

▶ how?
▶ intervene in reading a field from gray objects (read barrier)

▶ read-protect the region of gray objects ⊂ scan ∼ free, by
the virtual memory primitive of operating systems

   A B D
to space
from space

scan free no read

C
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Appel-Ellis-Li : the read barrier in action

▶ when a field of a gray object is read, blacken objects in the
page containing it (= scan those objects → they become
gray)�

1 trap_read_from_grey(a) {

2 page = the page including a;

3 for (all objects o in the page) {

4 scan(o); // copy o’s children

5 }

6 unprotect(page);

7 }

   A B D
to space
from space

scan free no read

C
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Remark : it’s easier for copying GC

▶ during a copying GC, there are two versions of each visited
object (one in the from space and the other in the to space)

▶ immutable objects do not care which one the mutator sees,
but mutable ones do

▶ it will eventually see the one in to space anyways, so it’s
natural to maintain “it never sees the one in the from
space”

▶ → it’s natural to let the mutator never see (get a pointer
to) a white object

  to:

from:
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Example #2: Boehm GC

▶ conservative GC (→ mark&sweep) + incremental

▶ invariants:
▶ “non-root black → white ” pointers never exist

▶ how?
▶ capture “writing to an object field” (write barrier)

▶ remark: “root → white” pointers may exist
▶ prevention requires us to capture writing to the root →

reading from an object
▶ the overhead is so large that it deserves a separate

treatment (covered later)
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Write barrier in Boehm GC

▶ capture writing into objects by virtual memory (the only
choice in C/C++)

▶ gray the “written-to” object
▶ push it onto the mark stack

▶ no read barriers → “root (black) → white” pointers are
allowed

▶ at the end of a mark phase, it traverses from the root again

▶ during this second traversal, the mutator is stopped → it
may cause a long pause time
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Appendix: a more rigorous correctness proof

▶ while it is clear “black→white” pointers cause a problem, it
is not trivial that preventing them is sufficient to solve the
problem

▶ the proposition to prove: after the following algorithm
finished,

reachable from the root → black�
1 gray the root;

2 while (there are gray objects) {

3 o = pick and blacken a gray object;

4 for (pointers p in o)

5 if (p points to a white object)

6 gray it;

7 the mutator changes the graph;

8 }
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The key invariant

▶ the following “always” holds during the execution (GC or
mutator)

(I): all “white” objects reachable from the root are reach-
able from some “gray” objects

▶ if this is true,
(I) and the termination condition (i.e. there are no grays)

→ no white objects are reachable from the root
→ white objects can be reclaimed

and we are done. the only remaining task is to prove (I).
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Proof of (I)

▶ say w is a white object reachable from the root

...
▶ since the root is always black or gray and there are no

“black → white” pointers (∗), there must be a gray object
on each path P from the root to w (QED).

......
▶ (∗) : you need to show that not only the mutator but also

the collector never creates “black → white” pointers. it’s
easy and left as an exercise.
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