Programming Languages (7)
Garbage Collection (GC) : A Brief

Introduction

Kenjiro Taura

1/14

Contents

@ Introduction
© Basics and Terminologies

© Two basic methods
e Traversing GC
@ Reference Counting

2/14

© ntroduction
© Basics and Terminologies

© Two basic methods
e Traversing GC
@ Reference Counting

3/14

Garbage Collection (GC)

o the fundamental issue is the mismatch between

» the period in which objects are accessed
» the period in which the memory block for it is retained

0x1230]

456; 789

0x1230 0x1230

premature free memory leak

4/14

Garbage Collection (GC)

e the fundamental issue is the mismatch between
» the period in which objects are accessed

» the period in which the memory block for it is retained
0x1230]

456; 789

0x1230 0x1230

premature free memory leak

e = Garbage collection (GC)
» ratain memory block for objects if they could ever be
accessed in future and reclaim otherwise
» the system automatically does that
» = eliminate memory leak and corruption

4/14

Garbage Collection (GC)

o the fundamental issue is the mismatch between

» the period in which objects are accessed
» the period in which the memory block for it is retained

0x1230]

456; 789

0x1230 0x1230

premature free memory leak

e = Garbage collection (GC)
» ratain memory block for objects if they could ever be
accessed in future and reclaim otherwise
» the system automatically does that
» = eliminate memory leak and corruption
e the question: how does the system know which objects may be
accessed in future?

4/14

Objects that may {ever/never} be accessed

e the precise judgment is undecidable

o (at the start of line 2) “the object ; (int main(¢
pointed to by p will ever be 2| i (£ ==0) {
. 3 printf ("%d\n", p->f->x);
accessed” <= “f(x) will Ly
terminate and return 0” — you
need to be able to solve the halting
problem. . .
e — conservatively estimate objects that may be accessed in
future
» NEVER reclaim those that are accessed
» OK not to reclaim those that are in fact never accessed

}

[

e in the above example, OK to retain objects pointed to by p
when the line 2 is about to start

5/14

Objects that “may be” accessed

IS N S S R

-
B W W~

@ global variables

int * s, * t;

void hO) { ... }

void g() {

BO;

.= pPT>X ...

voic.i £fO {

g0

.= 9>y ...

int main() {

£0O

L =Tz ...

@ local variables of active function calls (calls that have started but
have not finished)

h:
o
,,,,,,, P
f: q
main : S (I

active function calls

[T 1

global variables

6/14

Objects that “may be” accessed

@ global variables

@ local variables of active function calls (calls that have started but
have not finished)

@ objects reachable from them by traversing pointers

1 |int * s, * t;

2 |void h() { ... }
3 | void g() {

4

5 hQ);

6 L. = P> ...}
7 | void £0) {

8

9 g0

10 . =gy ...}
11 | int main() {

12

13 £0O

14 =r->z ... }

6/14

@ Introduction
@ Basics and Terminologies

© Two basic methods
e Traversing GC
@ Reference Counting

7/14

The basic workings (and terminologies) of GC

@ an object: the unit of automatic memory allocation/release
(malloc in C; objects in Java; etc.)

8/14

The basic workings (and terminologies) of GC

@ an object: the unit of automatic memory allocation/release
(malloc in C; objects in Java; etc.)

e the root: objects accessible without traversing pointers, such
as global variables and local variables of active function calls

8/14

The basic workings (and terminologies) of GC

@ an object: the unit of automatic memory allocation/release
(malloc in C; objects in Java; etc.)

e the root: objects accessible without traversing pointers, such
as global variables and local variables of active function calls

e reachable objects: objects reachable from the root by
traversing pointers

8/14

The basic workings (and terminologies) of GC

@ an object: the unit of automatic memory allocation/release
(malloc in C; objects in Java; etc.)

e the root: objects accessible without traversing pointers, such
as global variables and local variables of active function calls

e reachable objects: objects reachable from the root by
traversing pointers

e live / dead objects: objects that {may be / never be}
accessed in future

8/14

The basic workings (and terminologies) of GC

@ an object: the unit of automatic memory allocation/release
(malloc in C; objects in Java; etc.)

e the root: objects accessible without traversing pointers, such
as global variables and local variables of active function calls

e reachable objects: objects reachable from the root by
traversing pointers

e live / dead objects: objects that {may be / never be}
accessed in future

e garbage: dead objects

8/14

The basic workings (and terminologies) of GC

an object: the unit of automatic memory allocation /release
(malloc in C; objects in Java; etc.)

the root: objects accessible without traversing pointers, such
as global variables and local variables of active function calls
reachable objects: objects reachable from the root by
traversing pointers

live / dead objects: objects that {may be / never be}
accessed in future

garbage: dead objects

collector: the program (or the thread/process) doing GC

8/14

The basic workings (and terminologies) of GC

@ an object: the unit of automatic memory allocation/release
(malloc in C; objects in Java; etc.)

e the root: objects accessible without traversing pointers, such
as global variables and local variables of active function calls

e reachable objects: objects reachable from the root by
traversing pointers

e live / dead objects: objects that {may be / never be}
accessed in future

e garbage: dead objects

e collector: the program (or the thread/process) doing GC

e mutator: the user program (vs. collector). very GC-centric
terminology, viewing the user program as someone simply
“mutating” the graph of objects

8/14

The basic workings (and terminologies) of GC

@ an object: the unit of automatic memory allocation/release
(malloc in C; objects in Java; etc.)

e the root: objects accessible without traversing pointers, such
as global variables and local variables of active function calls

e reachable objects: objects reachable from the root by
traversing pointers

e live / dead objects: objects that {may be / never be}
accessed in future

e garbage: dead objects

e collector: the program (or the thread/process) doing GC

e mutator: the user program (vs. collector). very GC-centric
terminology, viewing the user program as someone simply
“mutating” the graph of objects

the basic principle of GC:

objects unreachable from the root are dead)
8/14

@ Introduction
© Basics and Terminologies

© Two basic methods
e Traversing GC
@ Reference Counting

9/14

The two major GC methods

e traversing GC:
» simply traverse pointers from the root, to find (or wisit)
objects reachable from the root

» reclaim objects not visited
» two basic traversing methods

* mark&sweep GC
* copying GC
e reference counting GC (or RC):
» during execution, maintain the number of pointers (reference
count) pointing to each object
» reclaim an object when its reference count drops to zero
» note: an object’s reference count is zero — it’s unreachable
from the root

e remark: “GC” sometimes narrowly refers to traversing GC

10/ 14

How traversing GC works

e traverse pointers from the root

e once all pointers have been traversed, objects that have not
been visited are garbage

e the difference between mark&sweep and copying is covered
later

Root]

11/14

How traversing GC works

e traverse pointers from the root

e once all pointers have been traversed, objects that have not
been visited are garbage

e the difference between mark&sweep and copying is covered
later

Root]

11/14

How traversing GC works

e traverse pointers from the root

e once all pointers have been traversed, objects that have not
been visited are garbage

e the difference between mark&sweep and copying is covered
later

Root]

11/14

How traversing GC works

e traverse pointers from the root

e once all pointers have been traversed, objects that have not
been visited are garbage

e the difference between mark&sweep and copying is covered
later

Root]

11/14

How traversing GC works

e traverse pointers from the root

e once all pointers have been traversed, objects that have not
been visited are garbage

e the difference between mark&sweep and copying is covered
later

Root]

11/14

How traversing GC works

e traverse pointers from the root

e once all pointers have been traversed, objects that have not
been visited are garbage

e the difference between mark&sweep and copying is covered
later

Root

11/14

How reference counting works

@ each object has a reference count (RC)
e update RCs during execution; e.g., upon p = q; —
» the RC of the object p points to -= 1
» the RC of the object q points to += 1
e reclaim an object when its RC drops to zero — RCs of
objects pointed to by the now reclaimed object decrease

12/14

How reference counting works

@ each object has a reference count (RC)
e update RCs during execution; e.g., upon p = q; —
» the RC of the object p points to -= 1
» the RC of the object q points to += 1
e reclaim an object when its RC drops to zero — RCs of
objects pointed to by the now reclaimed object decrease

[°]

12/ 14

How reference counting works

@ each object has a reference count (RC)
e update RCs during execution; e.g., upon p = q; —
» the RC of the object p points to -= 1
» the RC of the object q points to += 1
e reclaim an object when its RC drops to zero — RCs of
objects pointed to by the now reclaimed object decrease

12/ 14

How reference counting works

@ each object has a reference count (RC)
e update RCs during execution; e.g., upon p = q; —
» the RC of the object p points to -= 1
» the RC of the object q points to += 1
e reclaim an object when its RC drops to zero — RCs of
objects pointed to by the now reclaimed object decrease

12/ 14

How reference counting works

@ each object has a reference count (RC)
e update RCs during execution; e.g., upon p = q; —
» the RC of the object p points to -= 1
» the RC of the object q points to += 1
e reclaim an object when its RC drops to zero — RCs of
objects pointed to by the now reclaimed object decrease

unrgachable,yet

12/ 14

When an RC changes

@ a pointer is updated p = q; p—>f = q; etc.
e a function gets called

1 | int main() {
2 object *x q = ...;
3 £(q);
4|}

@ a variable goes out of scope or a function returns

f(object * p) {

{

object * r = ...;
} /* RC of r should decrease */

return ...; /* RC of p should decrease */

}

SIS RS R S TR NV (SR N

@ etc. any point pointer variables get copied / become no
longer used

13 /14

Shortcomings of GC

@ may be costly

» what if a traversing GC visits 10GB of reachable objects, to
reclaim only 100MB of memory?

e may pause the user program (mutator) for a long time

» a traversing GC does not want the mutator to modify the
object graph while traversing it

@ may slow the user program
» esp. by reference counting

methods to overcome some of the issues will be covered in later
weeks

14 /14

	Introduction
	Basics and Terminologies
	Two basic methods
	Traversing GC
	Reference Counting

