
Programming Languages (7)

Garbage Collection (GC) : A Brief

Introduction

Kenjiro Taura

1 / 14

Contents

1 Introduction

2 Basics and Terminologies

3 Two basic methods
Traversing GC
Reference Counting

2 / 14

Contents

1 Introduction

2 Basics and Terminologies

3 Two basic methods
Traversing GC
Reference Counting

3 / 14

Garbage Collection (GC)

the fundamental issue is the mismatch between
▶ the period in which objects are accessed
▶ the period in which the memory block for it is retained

0x1230

456; 789
0x1230 0x1230

premature free memory leak

⇒ Garbage collection (GC)
▶ ratain memory block for objects if they could ever be

accessed in future and reclaim otherwise
▶ the system automatically does that
▶ ⇒ eliminate memory leak and corruption

the question: how does the system know which objects may be
accessed in future?

4 / 14

Garbage Collection (GC)

the fundamental issue is the mismatch between
▶ the period in which objects are accessed
▶ the period in which the memory block for it is retained

0x1230

456; 789
0x1230 0x1230

premature free memory leak

⇒ Garbage collection (GC)
▶ ratain memory block for objects if they could ever be

accessed in future and reclaim otherwise
▶ the system automatically does that
▶ ⇒ eliminate memory leak and corruption

the question: how does the system know which objects may be
accessed in future?

4 / 14

Garbage Collection (GC)

the fundamental issue is the mismatch between
▶ the period in which objects are accessed
▶ the period in which the memory block for it is retained

0x1230

456; 789
0x1230 0x1230

premature free memory leak

⇒ Garbage collection (GC)
▶ ratain memory block for objects if they could ever be

accessed in future and reclaim otherwise
▶ the system automatically does that
▶ ⇒ eliminate memory leak and corruption

the question: how does the system know which objects may be
accessed in future?

4 / 14

Objects that may {ever/never} be accessed

the precise judgment is undecidable

(at the start of line 2) “the object
pointed to by p will ever be
accessed” ⇐⇒ “f(x) will
terminate and return 0” → you
need to be able to solve the halting
problem. . .

�
1 int main() {

2 if (f(x) == 0) {

3 printf("%d\n", p->f->x);

4 }

5 }

→ conservatively estimate objects that may be accessed in
future

▶ NEVER reclaim those that are accessed
▶ OK not to reclaim those that are in fact never accessed

in the above example, OK to retain objects pointed to by p

when the line 2 is about to start

5 / 14

Objects that “may be” accessed

global variables

local variables of active function calls (calls that have started but
have not finished)

objects reachable from them by traversing pointers

�
1 int * s, * t;

2 void h() { ... }

3 void g() {

4 ...

5 h();

6 ... = p->x ... }

7 void f() {

8 ...

9 g()

10 ... = q->y ... }

11 int main() {

12 ...

13 f()

14 ... = r->z ... }

main :

f :

g :

h :

p

r

q

active function calls

global variables

s
t

6 / 14

Objects that “may be” accessed

global variables

local variables of active function calls (calls that have started but
have not finished)

objects reachable from them by traversing pointers�
1 int * s, * t;

2 void h() { ... }

3 void g() {

4 ...

5 h();

6 ... = p->x ... }

7 void f() {

8 ...

9 g()

10 ... = q->y ... }

11 int main() {

12 ...

13 f()

14 ... = r->z ... }

main :

f :

g :

h :
x

p

r

q
y

z
active function calls

global variables

s
t

6 / 14

Contents

1 Introduction

2 Basics and Terminologies

3 Two basic methods
Traversing GC
Reference Counting

7 / 14

The basic workings (and terminologies) of GC

an object: the unit of automatic memory allocation/release
(malloc in C; objects in Java; etc.)

the root: objects accessible without traversing pointers, such
as global variables and local variables of active function calls
reachable objects: objects reachable from the root by
traversing pointers
live / dead objects: objects that {may be / never be}
accessed in future
garbage: dead objects
collector: the program (or the thread/process) doing GC
mutator: the user program (vs. collector). very GC-centric
terminology, viewing the user program as someone simply
“mutating” the graph of objects

8 / 14

The basic workings (and terminologies) of GC

an object: the unit of automatic memory allocation/release
(malloc in C; objects in Java; etc.)
the root: objects accessible without traversing pointers, such
as global variables and local variables of active function calls

reachable objects: objects reachable from the root by
traversing pointers
live / dead objects: objects that {may be / never be}
accessed in future
garbage: dead objects
collector: the program (or the thread/process) doing GC
mutator: the user program (vs. collector). very GC-centric
terminology, viewing the user program as someone simply
“mutating” the graph of objects

8 / 14

The basic workings (and terminologies) of GC

an object: the unit of automatic memory allocation/release
(malloc in C; objects in Java; etc.)
the root: objects accessible without traversing pointers, such
as global variables and local variables of active function calls
reachable objects: objects reachable from the root by
traversing pointers

live / dead objects: objects that {may be / never be}
accessed in future
garbage: dead objects
collector: the program (or the thread/process) doing GC
mutator: the user program (vs. collector). very GC-centric
terminology, viewing the user program as someone simply
“mutating” the graph of objects

8 / 14

The basic workings (and terminologies) of GC

an object: the unit of automatic memory allocation/release
(malloc in C; objects in Java; etc.)
the root: objects accessible without traversing pointers, such
as global variables and local variables of active function calls
reachable objects: objects reachable from the root by
traversing pointers
live / dead objects: objects that {may be / never be}
accessed in future

garbage: dead objects
collector: the program (or the thread/process) doing GC
mutator: the user program (vs. collector). very GC-centric
terminology, viewing the user program as someone simply
“mutating” the graph of objects

8 / 14

The basic workings (and terminologies) of GC

an object: the unit of automatic memory allocation/release
(malloc in C; objects in Java; etc.)
the root: objects accessible without traversing pointers, such
as global variables and local variables of active function calls
reachable objects: objects reachable from the root by
traversing pointers
live / dead objects: objects that {may be / never be}
accessed in future
garbage: dead objects

collector: the program (or the thread/process) doing GC
mutator: the user program (vs. collector). very GC-centric
terminology, viewing the user program as someone simply
“mutating” the graph of objects

8 / 14

The basic workings (and terminologies) of GC

an object: the unit of automatic memory allocation/release
(malloc in C; objects in Java; etc.)
the root: objects accessible without traversing pointers, such
as global variables and local variables of active function calls
reachable objects: objects reachable from the root by
traversing pointers
live / dead objects: objects that {may be / never be}
accessed in future
garbage: dead objects
collector: the program (or the thread/process) doing GC

mutator: the user program (vs. collector). very GC-centric
terminology, viewing the user program as someone simply
“mutating” the graph of objects

8 / 14

The basic workings (and terminologies) of GC

an object: the unit of automatic memory allocation/release
(malloc in C; objects in Java; etc.)
the root: objects accessible without traversing pointers, such
as global variables and local variables of active function calls
reachable objects: objects reachable from the root by
traversing pointers
live / dead objects: objects that {may be / never be}
accessed in future
garbage: dead objects
collector: the program (or the thread/process) doing GC
mutator: the user program (vs. collector). very GC-centric
terminology, viewing the user program as someone simply
“mutating” the graph of objects

8 / 14

The basic workings (and terminologies) of GC

an object: the unit of automatic memory allocation/release
(malloc in C; objects in Java; etc.)
the root: objects accessible without traversing pointers, such
as global variables and local variables of active function calls
reachable objects: objects reachable from the root by
traversing pointers
live / dead objects: objects that {may be / never be}
accessed in future
garbage: dead objects
collector: the program (or the thread/process) doing GC
mutator: the user program (vs. collector). very GC-centric
terminology, viewing the user program as someone simply
“mutating” the graph of objects

the basic principle of GC:
objects unreachable from the root are dead

8 / 14

Contents

1 Introduction

2 Basics and Terminologies

3 Two basic methods
Traversing GC
Reference Counting

9 / 14

The two major GC methods

traversing GC:
▶ simply traverse pointers from the root, to find (or visit)

objects reachable from the root
▶ reclaim objects not visited
▶ two basic traversing methods

⋆ mark&sweep GC
⋆ copying GC

reference counting GC (or RC):
▶ during execution, maintain the number of pointers (reference

count) pointing to each object
▶ reclaim an object when its reference count drops to zero
▶ note: an object’s reference count is zero → it’s unreachable

from the root

remark: “GC” sometimes narrowly refers to traversing GC

10 / 14

How traversing GC works

traverse pointers from the root
once all pointers have been traversed, objects that have not
been visited are garbage
the difference between mark&sweep and copying is covered
later

Root

11 / 14

How traversing GC works

traverse pointers from the root
once all pointers have been traversed, objects that have not
been visited are garbage
the difference between mark&sweep and copying is covered
later

Root

11 / 14

How traversing GC works

traverse pointers from the root
once all pointers have been traversed, objects that have not
been visited are garbage
the difference between mark&sweep and copying is covered
later

Root

11 / 14

How traversing GC works

traverse pointers from the root
once all pointers have been traversed, objects that have not
been visited are garbage
the difference between mark&sweep and copying is covered
later

Root

11 / 14

How traversing GC works

traverse pointers from the root
once all pointers have been traversed, objects that have not
been visited are garbage
the difference between mark&sweep and copying is covered
later

Root

11 / 14

How traversing GC works

traverse pointers from the root
once all pointers have been traversed, objects that have not
been visited are garbage
the difference between mark&sweep and copying is covered
later

Root

11 / 14

How reference counting works

each object has a reference count (RC)
update RCs during execution; e.g., upon p = q; →

▶ the RC of the object p points to -= 1
▶ the RC of the object q points to += 1

reclaim an object when its RC drops to zero → RCs of
objects pointed to by the now reclaimed object decrease

ルート

1

1

1

1

1

1
1

1

1

1
1

2

2

0

12 / 14

How reference counting works

each object has a reference count (RC)
update RCs during execution; e.g., upon p = q; →

▶ the RC of the object p points to -= 1
▶ the RC of the object q points to += 1

reclaim an object when its RC drops to zero → RCs of
objects pointed to by the now reclaimed object decrease

ルート

1

1

1

1

0

0
1

1

1

1
1

2

2

12 / 14

How reference counting works

each object has a reference count (RC)
update RCs during execution; e.g., upon p = q; →

▶ the RC of the object p points to -= 1
▶ the RC of the object q points to += 1

reclaim an object when its RC drops to zero → RCs of
objects pointed to by the now reclaimed object decrease

ルート

1

1

1

1

0

1

1

1
1

2

1

12 / 14

How reference counting works

each object has a reference count (RC)
update RCs during execution; e.g., upon p = q; →

▶ the RC of the object p points to -= 1
▶ the RC of the object q points to += 1

reclaim an object when its RC drops to zero → RCs of
objects pointed to by the now reclaimed object decrease

ルート

1

1

1

1

1

1

1
1

1

1

12 / 14

How reference counting works

each object has a reference count (RC)
update RCs during execution; e.g., upon p = q; →

▶ the RC of the object p points to -= 1
▶ the RC of the object q points to += 1

reclaim an object when its RC drops to zero → RCs of
objects pointed to by the now reclaimed object decrease

ルート

1

1

1

1

1

1

1
1

1

1

unreachable,yet
cannot be reclaimed

12 / 14

When an RC changes

a pointer is updated p = q; p->f = q; etc.
a function gets called�

1 int main() {

2 object * q = ...;

3 f(q);

4 }

a variable goes out of scope or a function returns�
1 f(object * p) {

2 ...

3 {

4 object * r = ...;

5

6 } /* RC of r should decrease */

7 ...

8 return ...; /* RC of p should decrease */

9 }

etc. any point pointer variables get copied / become no
longer used

13 / 14

Shortcomings of GC

may be costly
▶ what if a traversing GC visits 10GB of reachable objects, to

reclaim only 100MB of memory?

may pause the user program (mutator) for a long time
▶ a traversing GC does not want the mutator to modify the

object graph while traversing it

may slow the user program
▶ esp. by reference counting

methods to overcome some of the issues will be covered in later
weeks

14 / 14

	Introduction
	Basics and Terminologies
	Two basic methods
	Traversing GC
	Reference Counting

