
Programming Languages (6)

Rust Memory Management

Kenjiro Taura

1 / 1

Contents

2 / 1

Contents

3 / 1

Rust’s basic idea to memory management

▶ Rust maintains that, for any live object,

1. there is one and only one pointer that “owns” it (the
owner pointer)

2. “multiple borrowers” : there are arbitrary number of
non-owning pointers (borrowing pointers) pointing to
it, but they cannot be dereferenced after the owning
pointer goes away

▶ ⇒ it can safely reclaim the data when the owning
pointer goes away

“single-owner-multiple-borrowers rule”

own

borrow

borrow

4 / 1

The rule is enforced statically

▶ Rust maintains the rule statically (as opposed to
dynamically)

▶ equivalently,
▶ compile-time rather than at runtime
▶ before execution not during execution

5 / 1

Ways outside the basics

to be sure, there are some ways to get around the rules

1. reference counting ≈
▶ allows multiple owning pointers
▶ counts the number of owners at runtime, and reclaim

the data when all owning pointers are gone

2. unsafe/raw pointers (≈ totally up to you)

but they are not specific to Rust, and we’ll not cover them
in the rest of this slide deck

6 / 1

Contents

7 / 1

Pointer-like data types in Rust

given a type T (i32, struct, enum, . . .), below are types
representing “references (pointers) to T”1

1. &T (pronounced “ref T”) : immutable borrowing
pointer to data of T (through which you cannot
modify it)

2. &mut T (“ref mute T”) : mutable borrowing pointer to
data of T (through which you can modify it)

3. Box<T> (box T) : owning pointer to T
4. Rc<T> and Arc<T> : shared (reference-counting)

owning pointer to T
5. *T : unsafe pointer to T

following discussions are focused on &T and Box<T>

Box<T>

&T

T

&T
1we use pointers and references interchangeably 8 / 1

Pointer-making expressions

given an expression e of type T , below are expressions that
make pointers to the value of e

1. &e (of type &T) : an immutable borrowing pointer
(through which you cannot modify the referent)

2. &mut e (of type &mut T) : a mutable borrowing
pointer (through which you can modify the referent)

3. Box::new(e) (of type Box<T>) : an owning pointer

9 / 1

An example

�
1 {

2 let mut a = S{x: ...}; // allocate memory for S

3 let b: &S = &a; // make a borrowing pointer to a

4 let c: &mut S = &mut a; // make a borrowing pointer to a

5 let o: Box<S> = Box::new(a); // make an owning pointer to a

6 }

7

▶ note: type of variables can be omitted (spelled out for
clarity)

▶ note: the above program violates several rules so it
does not compile

10 / 1

Contents

11 / 1

Assignments do not copy, but move, the value

▶ to maintain only one “owner” pointer, an assignment
in Rust moves the value out of righthand side,
disallowing further use of it

x = y;

// y can no longer be used

▶ e.g.,

fn foo() {
let a = S{x: ..., y: ...};

}

a

12 / 1

Assignments do not copy, but move, the value

▶ to maintain only one “owner” pointer, an assignment
in Rust moves the value out of righthand side,
disallowing further use of it

x = y;

// y can no longer be used

▶ e.g.,

fn foo() {
let a = S{x: ..., y: ...};
... a.x ...; // OK, as expected
... a.y ...; // OK, as expected

}

a

12 / 1

Assignments do not copy, but move, the value

▶ to maintain only one “owner” pointer, an assignment
in Rust moves the value out of righthand side,
disallowing further use of it

x = y;

// y can no longer be used

▶ e.g.,

fn foo() {
let a = S{x: ..., y: ...};
... a.x ...; // OK, as expected
... a.y ...; // OK, as expected
// the value moves away from a to b
let b = a;

}

a

b

12 / 1

Assignments do not copy, but move, the value

▶ to maintain only one “owner” pointer, an assignment
in Rust moves the value out of righthand side,
disallowing further use of it

x = y;

// y can no longer be used

▶ e.g.,

fn foo() {
let a = S{x: ..., y: ...};
... a.x ...; // OK, as expected
... a.y ...; // OK, as expected
// the value moves away from a to b
let b = a;

a.x; // NG, the value has moved out
b.x; // OK

}

a

b

12 / 1

Argument-passing also moves the value

▶ passing a value to a function also moves the value out

fn foo() {
let a = S{x: ..., y: ...};
... a.x ...; // OK, as expected
... a.y ...; // OK, as expected

}

afoo

13 / 1

Argument-passing also moves the value

▶ passing a value to a function also moves the value out

fn foo() {
let a = S{x: ..., y: ...};
... a.x ...; // OK, as expected
... a.y ...; // OK, as expected
// this also moves the value away from a
f(a);

a.x; // NG, the value has moved out
}

afoo

xf(x)

13 / 1

Note: exceptions to “assignment moves the value”

▶ the value-moving assignment
x = y;

// y can no longer be used

contradicts what you have seen
▶ does it apply to a primitive type, say f64?

fn foo() {
let a = 123.456;

// does the value move out from a!?
let b = a;

a + 0.789; // if so, is this invalid!?
}

▶ answer: no, it does not apply to primitive types like
i32, f64, etc.

▶ a more general answer: it does not apply to data types
that implement Copy trait

14 / 1

Copy trait

▶ define your struct with #[derive(Copy, Clone)] like�
1 #[derive(Copy, Clone)]

2 struct S { ... }

▶ and assignment or argument-passing of S makes a copy
of righthand side

fn foo() {
let a = S{x: ..., y: ...};
a.x; // OK, as expected
a.y; // OK, as expected

}

a

15 / 1

Copy trait

▶ define your struct with #[derive(Copy, Clone)] like�
1 #[derive(Copy, Clone)]

2 struct S { ... }

▶ and assignment or argument-passing of S makes a copy
of righthand side

fn foo() {
let a = S{x: ..., y: ...};
a.x; // OK, as expected
a.y; // OK, as expected
// the value is copied
let b = a;

}

a

b

15 / 1

Copy trait

▶ define your struct with #[derive(Copy, Clone)] like�
1 #[derive(Copy, Clone)]

2 struct S { ... }

▶ and assignment or argument-passing of S makes a copy
of righthand side

fn foo() {
let a = S{x: ..., y: ...};
a.x; // OK, as expected
a.y; // OK, as expected
// the value is copied
let b = a;

a.x; // OK
b.x; // OK, too

}

a

b

15 / 1

Copy types and the single-owner rule

▶ when a copy is made on every assignment or argument
passing, the single-owner rule is trivially maintained

▶ below, we will only discuss types not implementing
Copy trait (non-Copy types)

16 / 1

Contents

17 / 1

Box<T> makes an owning pointer

▶ making a pointer by Box::new(v) moves the value out
of v, too, and it becomes the owning pointer

fn foo() {
let a = S{x: ..., y: ...};
a.x; // OK, as expected
a.y; // OK, as expected

}

a

18 / 1

Box<T> makes an owning pointer

▶ making a pointer by Box::new(v) moves the value out
of v, too, and it becomes the owning pointer

fn foo() {
let a = S{x: ..., y: ...};
a.x; // OK, as expected
a.y; // OK, as expected
// OK, now o becomes the owning pointer
let o = Box::new(a)

}

a

o

18 / 1

Box<T> makes an owning pointer

▶ making a pointer by Box::new(v) moves the value out
of v, too, and it becomes the owning pointer

fn foo() {
let a = S{x: ..., y: ...};
a.x; // OK, as expected
a.y; // OK, as expected
// OK, now o becomes the owning pointer
let o = Box::new(a)

a.x; // NG, the value has moved out

}

a

o

18 / 1

Box<T> makes an owning pointer

▶ making a pointer by Box::new(v) moves the value out
of v, too, and it becomes the owning pointer

fn foo() {
let a = S{x: ..., y: ...};
a.x; // OK, as expected
a.y; // OK, as expected
// OK, now o becomes the owning pointer
let o = Box::new(a)

a.x; // NG, the value has moved out
(*o).x; // OK

}

a

o

18 / 1

Box<T> makes an owning pointer

▶ making a pointer by Box::new(v) moves the value out
of v, too, and it becomes the owning pointer

fn foo() {
let a = S{x: ..., y: ...};
a.x; // OK, as expected
a.y; // OK, as expected
// OK, now o becomes the owning pointer
let o = Box::new(a)

a.x; // NG, the value has moved out
(*o).x; // OK
o.x; // OK. abbreviation of (*o).x

}

a

o

18 / 1

Make no mistake: making Box::new(v) does not

affect lifetime

▶ a = Box::new(v) has no effect of making v live longer
▶ when a goes out of scope, v will be gone�
1 fn foo() {

2 ...

3 {

4 let a = S{...};

5 let p = Box::new(a);

6 } // --- S{...} will die here, too

7 }

just like�
1 fn foo() {

2 ...

3 {

4 let a = S{...};

5 let p = a;

6 } // --- S{...} will die here

7 }

19 / 1

Note: difference between T and Box::<T>?

▶ for any value v of type T , you can only have one and
only one (still usable) variable that refers to v, which is
either of type T or Box::<T>

▶ in this sense, you can think of T as just another kind
of pointer to T just like Box::<T>

▶ so is there any reason for Rust to have both T and
Box::<T>?

20 / 1

T and Box::<T>

▶ the distinction becomes important when you reason
about data layout
▶ struct S { p: T, ... } “embeds” a T into S
▶ struct U { p: Box<T>, ... } has p point to a

separately allocated T

▶ in particular,
▶ struct S { p: S, ... } is not allowed, whereas
▶ struct U { p: Box<U>, ... } is

▶ the distinction is not important when discussing
lifetimes (you can consider T a pointer without being
confused)

21 / 1

A (huge) implication of the single-owner rule (1)

▶ with only owning pointers (T and Box<T>),
▶ you can make trees of T ,
▶ but you cannot make general graphs of T (acyclic or

cyclic), where a node may be pointed to by multiple
nodes

▶ if you want to make graphs of T , you use either
▶ &T to represent edges, or
▶ Vec<T> to represent nodes and Vec<(i32,i32)> to

represent edges

22 / 1

A (huge) implication of the single-owner rule (2)

▶ with only owning pointers, no two names in scope ever
refer to the same object (no aliasing)

▶ a and b below never refer to the same object�
1 fn take_two(a : Box<T>, b : Box<T>) {

2 ...

3 }

▶ a boon for the compiler

▶ a useful property to avoid mistakes, too

23 / 1

Contents

24 / 1

Borrowers rule in action

▶ a borrowing pointer cannot be dereferenced after its
owning pointer is gone
fn foo() -> i32 {
let c: &S; // a reference to S
{ // an inner block

}

}

c : &S

25 / 1

Borrowers rule in action

▶ a borrowing pointer cannot be dereferenced after its
owning pointer is gone
fn foo() -> i32 {
let c: &S; // a reference to S
{ // an inner block
let b: &S; // another reference

}

}

b : &S

c : &S

25 / 1

Borrowers rule in action

▶ a borrowing pointer cannot be dereferenced after its
owning pointer is gone
fn foo() -> i32 {
let c: &S; // a reference to S
{ // an inner block
let b: &S; // another reference
let a = S{x: ...}; // allocate S

}

}

b : &S

c : &S
a : S

25 / 1

Borrowers rule in action

▶ a borrowing pointer cannot be dereferenced after its
owning pointer is gone
fn foo() -> i32 {
let c: &S; // a reference to S
{ // an inner block
let b: &S; // another reference
let a = S{x: ...}; // allocate S
// OK (both a and b live only until the end of the inner block)
b = &a;

}

}

b : &S

c : &S
a : S

25 / 1

Borrowers rule in action

▶ a borrowing pointer cannot be dereferenced after its
owning pointer is gone
fn foo() -> i32 {
let c: &S; // a reference to S
{ // an inner block
let b: &S; // another reference
let a = S{x: ...}; // allocate S
// OK (both a and b live only until the end of the inner block)
b = &a;

c = b; // dangerous (c outlives a)
}

}

b : &S

c : &S
a : S

25 / 1

Borrowers rule in action

▶ a borrowing pointer cannot be dereferenced after its
owning pointer is gone
fn foo() -> i32 {
let c: &S; // a reference to S
{ // an inner block
let b: &S; // another reference
let a = S{x: ...}; // allocate S
// OK (both a and b live only until the end of the inner block)
b = &a;

c = b; // dangerous (c outlives a)
} // a dies here, making c a dangling pointer

}

b : &S

c : &S
a : S

!

25 / 1

Borrowers rule in action

▶ a borrowing pointer cannot be dereferenced after its
owning pointer is gone
fn foo() -> i32 {
let c: &S; // a reference to S
{ // an inner block
let b: &S; // another reference
let a = S{x: ...}; // allocate S
// OK (both a and b live only until the end of the inner block)
b = &a;

c = b; // dangerous (c outlives a)
} // a dies here, making c a dangling pointer
c.x // NG (deref a dangling pointer)

}

25 / 1

A mutable borrowing reference (&mut T) has an

additional restriction

▶ a stronger restriction is imposed on &mut T
▶ you cannot use the originating (owning) pointer (T or

Box<T>) or
▶ derive other borrowing pointers (mutable or not) from

a mutable borrowing reference (&mut T)

where a mutable borrowing reference is active in scope
▶ active ≈ may be used in future (omitting details)�
1 fn mut_ref() {

2 let mut a = S{x: ...};

3 let m = &mut a; // make a mutable ref to a

4 ... a.x ...; // NG: cannot use a (the originating pointer)
5 let d = &a; // NG: cannot borrow from a either
6 let c = m; // NG: cannot derive another reference
7 m.x // --- m is active up to this point

8 ... a.x ...; // OK: as m no longer active here
9 }

26 / 1

A mutable borrowing reference enjoys no aliasing,

too (even stronger one)

▶ like an owning pointer, a mutable reference also enjoys
the no aliasing property

▶ even more strongly, it cannot alias with other
borrowing references (mutable or not)

▶ p below cannot be an alias of any of others

▶ q and r may be an alias of each other�
1 fn take_many(p: &mut T, q: &T, r: &T, a: T, b: Box<T>) {

2 ...

3 }

▶ discussions below are focused on memory management,
and apply both to immutable and mutable references

27 / 1

Working with Box<T> or &T

▶ Box<T> and &T are both pointers

▶ you might naturally wonder which one to use when

▶ generally, use Box<T> to link data structures together

▶ use &T to work on existing data structures without any
allocation or deallocation

▶ for this reason, many functions that take data
structures as input take &T

28 / 1

Contents

29 / 1

A technical remark about borrowers rule

▶ it’s not a creation of a dangling pointer, per se, that is
not allowed, but dereferencing of it

▶ a slightly modified code below compiles without an
error, despite that c becomes a dangling pointer to a

(as it is not dereferenced past a’s lifetime)
fn foo() -> i32 {
let c: &S; // a reference to S
{ // an inner block
let b: &S; // another reference
let a = S{x: ...}; // allocate S
// OK (both a and b live only until the end of the inner block)
b = &a;

c = b; // dangerous (c outlives a)
}// a dies here, making c a dangling pointer
// c.x don’t deref c

}

30 / 1

A more precise statement of borrowers rule

1. for each borrowing reference (&T or &mut T type),
Rust compiler determines the lifetime of data it points
to (referent lifetime) as part of its static type

2. assignment between borrowing pointers (p = q) equate
their referent lifetimes

3. dereferencing a borrowing pointer p (e.g., p.x) is
allowed only within the p’s referent lifetime

fn foo() -> i32 {
let c: &S; // → ??
{
let b: &S; // → ??
let a = S{x: ...};
b = &a;

c = b;

} // a dies here (α)
c.x

} 31 / 1

A more precise statement of borrowers rule

1. for each borrowing reference (&T or &mut T type),
Rust compiler determines the lifetime of data it points
to (referent lifetime) as part of its static type

2. assignment between borrowing pointers (p = q) equate
their referent lifetimes

3. dereferencing a borrowing pointer p (e.g., p.x) is
allowed only within the p’s referent lifetime

fn foo() -> i32 {
let c: &S; // → ??
{
let b: &S; // → ??
let a = S{x: ...};
b = &a;

c = b;

} // a dies here (α)
c.x

} 31 / 1

A more precise statement of borrowers rule

1. for each borrowing reference (&T or &mut T type),
Rust compiler determines the lifetime of data it points
to (referent lifetime) as part of its static type

2. assignment between borrowing pointers (p = q) equate
their referent lifetimes

3. dereferencing a borrowing pointer p (e.g., p.x) is
allowed only within the p’s referent lifetime

fn foo() -> i32 {
let c: &S; // → ??
{
let b: &S; // → α
let a = S{x: ...}; // lives until α
b = &a; // b’s referent lifetime = a’s lifetime
c = b;

} // a dies here (α)
c.x

} 31 / 1

A more precise statement of borrowers rule

1. for each borrowing reference (&T or &mut T type),
Rust compiler determines the lifetime of data it points
to (referent lifetime) as part of its static type

2. assignment between borrowing pointers (p = q) equate
their referent lifetimes

3. dereferencing a borrowing pointer p (e.g., p.x) is
allowed only within the p’s referent lifetime

fn foo() -> i32 {
let c: &S; // → α
{
let b: &S; // → α
let a = S{x: ...}; // lives until α
b = &a; // b’s referent lifetime = a’s lifetime
c = b; // c’s referent lifetime = b’s referent lifetime

} // a dies here (α)
c.x

} 31 / 1

A more precise statement of borrowers rule

1. for each borrowing reference (&T or &mut T type),
Rust compiler determines the lifetime of data it points
to (referent lifetime) as part of its static type

2. assignment between borrowing pointers (p = q) equate
their referent lifetimes

3. dereferencing a borrowing pointer p (e.g., p.x) is
allowed only within the p’s referent lifetime

fn foo() -> i32 {
let c: &S; // → α
{
let b: &S; // → α
let a = S{x: ...}; // lives until α
b = &a; // b’s referent lifetime = a’s lifetime
c = b; // c’s referent lifetime = b’s referent lifetime

} // a dies here (α)
c.x

} 31 / 1

A more precise statement of borrowers rule

1. for each borrowing reference (&T or &mut T type),
Rust compiler determines the lifetime of data it points
to (referent lifetime) as part of its static type

2. assignment between borrowing pointers (p = q) equate
their referent lifetimes

3. dereferencing a borrowing pointer p (e.g., p.x) is
allowed only within the p’s referent lifetime

fn foo() -> i32 {
let c: &S; // → α
{
let b: &S; // → α
let a = S{x: ...}; // lives until α
b = &a; // b’s referent lifetime = a’s lifetime
c = b; // c’s referent lifetime = b’s referent lifetime

} // a dies here (α)
c.x // NG (deref outside c’s referent lifetime = α)

} 31 / 1

Programming with borrowing references

▶ programs using borrowing references must help
compilers track their referent lifetimes

▶ this must be done for functions called from unknown
places, function calls to unknown functions and data
structures

▶ to this end, the programmer sometimes must annotate
reference types with their referent lifetimes

32 / 1

References in function parameters

▶ problem: how to check the validity of functions taking
references�

1 fn p_points_q(p: &mut P, q: &Q) {

2 p.x = q; // OK?
3 }

without knowing all its callers, and function calls
passing references�

1 let c = ...;

2 {

3 let a = Q{...};

4 let b = &a;

5 f(c, b);

6 }

7 ... c.x.y ... // OK?

without knowing the definition of f?

33 / 1

References in function return values

▶ problem: how to check the validity of functions
returning references�

1 fn return_ref(...) -> &P {

2 ...

3 let p: &P = ...

4 ...

5 p // OK?
6 }

without knowing its all callers, and function calls
receiving references from function calls�

1 fn receive_ref() {

2 ...

3 let p: &P = return_ref(...);

4 ...

5 p.x // OK?
6 }

34 / 1

References in data structures

▶ problem: how to check the validity of dereferencing a
pointer obtained from a data structure�

1 fn ref_from_struct() {

2 ...

3 let p: &P = a.p;

4 ...

5 p.x // OK?
6 }

▶ what about functions taking data structures containing
references and returning another containing references,
etc.?

35 / 1

Reference type with a lifetime parameter

▶ to address this problem, Rust’s borrowing reference
types (&T or &mut T) carry lifetime parameter
representing their referent lifetimes

▶ syntax:
▶ &’a T : reference to “T whose lifetime is ’a”
▶ &’a mut T : ditto; except you can modify data

through it

T

lives until 'a

▶ every reference carries a lifetime parameter, though
there are places you can omit them

▶ roughly, you must write them explicitly in function
parameters, return types, and struct/enum fields; and
can omit them for local variables

36 / 1

Reference type with a lifetime parameter

▶ to address this problem, Rust’s borrowing reference
types (&T or &mut T) carry lifetime parameter
representing their referent lifetimes

▶ syntax:
▶ &’a T : reference to “T whose lifetime is ’a”
▶ &’a mut T : ditto; except you can modify data

through it

&'a T T

lives until 'a

▶ every reference carries a lifetime parameter, though
there are places you can omit them

▶ roughly, you must write them explicitly in function
parameters, return types, and struct/enum fields; and
can omit them for local variables

36 / 1

Attaching lifetime parameters to functions

▶ the following does not compile�
1 fn foo(ra: &i32, rb: &i32, rc: &i32) -> &i32 {

2 ra

3 }

▶ with errors like�
1 |

2 | fn foo(ra: &i32, rb: &i32, rc: &i32) -> &i32 {

3 | ---- ---- ---- ^ expected named lifetime parameter

4 |

5 = help: this function’s return type contains a borrowed value, but the signature does not

say whether it is borrowed from ‘ra‘, ‘rb‘, or ‘rc‘

6 help: consider introducing a named lifetime parameter

7 |

8 | fn foo<’a>(ra: &’a i32, rb: &’a i32, rc: &’a i32) -> &’a i32 {

9 | ++++ ++ ++ ++ ++

37 / 1

Why do we need an annotation, fundamentally?

▶ without any annotation, how to know whether this is
safe, without knowing the definition of foo?�

1 {

2 let r : &i32;

3 let a = 123;

4 {

5 let b = 456;

6 {

7 let c = 789;

8 r = foo(&a, &b, &c);

9 }

10 }

11 *r

12 }

▶ essentially, the compiler complains “tell me what kind
of lifetime foo(&a, &b, &c) has”

38 / 1

Attaching lifetime parameters to functions

▶ syntax:�
1 fn f<’a,’b,’c,...>(p0 : T0, p1 : T1, ...) -> Tr { ... }

T0, T1, · · · and Tr may use ’a, ’b, ’c, ... as
lifetime parameters (e.g., &’a i32)

▶ f<’a,’b,’c,...> is a function that takes parameters
of respective lifetimes

39 / 1

One way to attach lifetime parameters
▶�
1 fn foo<’a>(ra: &’a i32, rb: &’a i32, rc: &’a i32) -> &’a i32

▶ effect: the return value is assumed to point to the
shortest of the three

▶ why? generally, when Rust compiler finds foo(x, y,
z), it tries to determine ’a so that it is contained in
the lifetime of all (x, y and z)

▶ as a result, our program does not compile, even if
foo(&a, &b, &c) in fact returns &a�

1 {

2 let r: &i32;

3 let a = 123;

4 {

5 let b = 456;

6 {

7 let c = 789;

8 r = foo(&a, &b, &c); // ’a ← shortest of {α, β, γ} = γ
9 // and r’s type becomes &γ i32

10 } // c’s lifetime (= γ) ends here
11 } // b’s lifetime (= β) ends here
12 *r // NG, as we are outside γ
13 } // a’s lifetime (= α) ends here

40 / 1

An alternative
▶�
1 fn foo<’a,’b,’c>(ra: &’a i32, rb: &’b i32, rc: &’c i32) -> &’a i32

▶ signifies that the return value points to data whose
lifetime is ra’s referent lifetime (and has nothing to do
with rb’s or rc’s)

▶ for foo(x, y, z), Rust compiler tries to determine ’a

so it is contained in the lifetime of x’s referent
(therefore ’a = α)

▶ as a result, the program we are discussing compiles�
1 {

2 let r: &i32;

3 let a = 123;

4 {

5 let b = 456;

6 {

7 let c = 789;

8 r = foo(&a, &b, &c); // ’a → shortest of {α} = α
9 // and r’s type becomes &α i32

10 } // c’s lifetime (= γ) ends here
11 } // b’s lifetime (= β) ends here
12 *r // OK, as here is within α
13 } // a’s lifetime (= α) ends here

41 / 1

Types with lifetime parameters capture/constrain

the function’s behavior

▶ what if you try to fool the compiler by�
1 fn foo<’a,’b,’c>(ra: &’a i32, rb: &’b i32, rc: &’c i32) -> &’a i32

2 rb

3 }

▶ the compiler rejects returning rb (of type &’b) when
the function’s return type is &’a

▶ in general, the compiler allows assignments only
between references having the same lifetime parameter

42 / 1

Another example (make a reference between

inputs)

▶ what if we rewrite�
1 r = foo(&a, &b, &c);

into�
1 bar(&mut r, &a, &b, &c);

with bar something like�
1 fn bar(r: &mut &i32, a: &i32, b: &i32, c: &i32) {

2 *r = a;

3 }

43 / 1

Make a reference between inputs

▶ how to specify lifetime parameters so that

1. *r = a; in bar’s definition is allowed, and
2. we can dereference *r at the end of the caller?�

1 {

2 let a = 123;

3 let mut r = &0;

4 {

5 let b = 456;

6 {

7 let c = 789;

8 bar(&mut r, &a, &b, &c); // r → ???

9 } // c’s lifetime (= γ) ends here
10 } // b’s lifetime (= β) ends here
11 *r // OK???
12 } // a’s lifetime (= α) ends here

44 / 1

Answer

▶ again, we need to signify r points to a (and not b or c
after bar(&r, &a, &b, &c)

▶ a working lifetime parameter is the following�
1 fn bar<’a,’b,’c>(r: &mut &’a i32, a: &’a i32,

2 b: &’b i32, c: &’c i32) {

3 *r = a;

4 }

45 / 1

References in data structures

▶ problem: how to check the validity of programs using
data structure containing a borrowing reference�

1 struct R {

2 p: &i32

3 ...

4 }

and functions returning R�
1 fn ret_r(a: &i32, b: &i32, c: &i32) -> R {

2 R{p: a}

3 }

or taking R (or reference to it)�
1 fn take_r(r: &mut R, a: &i32, b: &i32, c: &i32) {

2 r.p = a;

3 }

46 / 1

References in data structures

▶ you cannot simply have a field of type &T in
struct/enum like this�

1 struct R {

2 p: &i32

3 ...

4 }

▶ you need to specify the lifetime parameter of p, and
signifies that R takes a lifetime parameter�

1 struct R<’a> {

2 p: &’a i32

3 ...

4 }

▶ R<’a> represents R whose p field points i32 whose
lifetime is ’a

47 / 1

Attaching lifetime parameters to data structure

▶ say we like to have data structures�
1 struct T { x: i32 }

2 struct S { p: &T }

and a function�
1 fn make_s(a: &T, b: &T) -> S { S{p: a} }

so that the following compiles�
1 let s;

2 let a = T{...};

3 {

4 let b = T{...};

5 s = make_s(&a, &b);

6 }

7 s.p.x

▶ the compiler needs to verify s.p points to a, not b

▶ we have to signify that by appropriate lifetime
parameters

48 / 1

Answer

▶ define S<’a> so
▶ its p’s referent lifetime is ’a�

1 struct S<’a> { p: &’a T }

▶ define make s so it returns S<’a> where ’a is the
referent lifetime of its first parameter�

1 fn make_s(a: &’a T, b: &’b T) -> S<’a> {

2 S{p: a}

3 }

49 / 1

A more complex example Rust cannot verify

▶ say we now have data structures�
1 struct T { x: i32 }

2 struct S {

3 p: &T,

4 q: &T

5 }

and a function�
1 fn make_s(a: &T, b: &T) -> S { S{p: a, q: b} }

so that the following compiles�
1 let s;

2 let a = T{...};

3 {

4 let b = T{...};

5 s = make_s(&a, &b);

6 }

7 s.p.x

▶ again, the compiler needs to verify s.p points to a, not
b

50 / 1

Answer that I thought should work but didn’t

▶ define S so
▶ its p points to T of lifetime ’a and
▶ its q points to T of lifetime ’b�

1 struct S<’a, ’b> {

2 p: &’a T,

3 q: &’b T

4 }

▶ define make s so it returns S<’a, ’b> where ’a is the
lifetime of its first parameter, like�

1 fn make_s(a: &’a T, b: &’b T) -> S<’a, ’b> {

2 S{p: a, q: b}

3 }

51 / 1

The compiler complains

�
1 [E0597] Error: ‘b‘ does not live long enough

2 [command_36:1:1]

3 16 │ s = make_s(&a, &b);

4 . ---

5 . +--- borrowed value does not live long enough

6 17 │ }

7 . _

8 . +--- ‘b‘ dropped here while still borrowed

9 18 │ s.p.x

10 . -----

11 . +----- borrow later used here

12

▶ I don’t know what is the exact spec of Rust that
rejects this program, but I hypothesize that to
dereference s for any field (p), all fields must be alive

52 / 1

Contents

53 / 1

Why memory management is difficult

▶ every language wants to prevent dereferencing a
pointer to an already-reclaimed memory block (dangling
pointer)

▶ the problem would have been trivial if you could
reclaim v’s referent as soon as v goes out of scope

▶ this is not the case, as v’s referent may still be
reachable from other variables when v goes out of scope

{
let v = T{x: ...};
...

} v

54 / 1

Why memory management is difficult

▶ every language wants to prevent dereferencing a
pointer to an already-reclaimed memory block (dangling
pointer)

▶ the problem would have been trivial if you could
reclaim v’s referent as soon as v goes out of scope

▶ this is not the case, as v’s referent may still be
reachable from other variables when v goes out of scope

{
let v = T{x: ...};
...

} v

54 / 1

Why memory management is difficult

▶ every language wants to prevent dereferencing a
pointer to an already-reclaimed memory block (dangling
pointer)

▶ the problem would have been trivial if you could
reclaim v’s referent as soon as v goes out of scope

▶ this is not the case, as v’s referent may still be
reachable from other variables when v goes out of scope

{
let v = T{x: ...};
...

} // OK to drop v’s referent here? v

54 / 1

Why memory management is difficult

▶ every language wants to prevent dereferencing a
pointer to an already-reclaimed memory block (dangling
pointer)

▶ the problem would have been trivial if you could
reclaim v’s referent as soon as v goes out of scope

▶ this is not the case, as v’s referent may still be
reachable from other variables when v goes out of scope

{
let v = T{x: ...};
...

} v

54 / 1

Why memory management is difficult

▶ every language wants to prevent dereferencing a
pointer to an already-reclaimed memory block (dangling
pointer)

▶ the problem would have been trivial if you could
reclaim v’s referent as soon as v goes out of scope

▶ this is not the case, as v’s referent may still be
reachable from other variables when v goes out of scope

let p : &T;

{
let v = T{x: ...};
...

p = &v;

} // v never used below, but its referent is
... p.x ...

v

p !

54 / 1

C vs. GC vs. Rust

▶ C/C++ : it’s up to you

▶ GC : if it is reachable from other variables, I retain it
for you

▶ Rust : when v goes out of scope,

1. I reclaim Tv, all data reachable from v through owning
pointers

2. Tv may be reachable from other variables via
borrowing references, but I nevertheless guarantees a
reclaimed memory block is never accessed

C/C++ GC Rust

v

p

!

55 / 1

C vs. GC vs. Rust

▶ C/C++ : it’s up to you

▶ GC : if it is reachable from other variables, I retain it
for you

▶ Rust : when v goes out of scope,

1. I reclaim Tv, all data reachable from v through owning
pointers

2. Tv may be reachable from other variables via
borrowing references, but I nevertheless guarantees a
reclaimed memory block is never accessed

C/C++ GC Rust

v

p

!
v

p

55 / 1

C vs. GC vs. Rust

▶ C/C++ : it’s up to you

▶ GC : if it is reachable from other variables, I retain it
for you

▶ Rust : when v goes out of scope,

1. I reclaim Tv, all data reachable from v through owning
pointers

2. Tv may be reachable from other variables via
borrowing references, but I nevertheless guarantees a
reclaimed memory block is never accessed

C/C++ GC Rust

v

p

!
v

p

v

p X

Tv

55 / 1

How Rust achieved it?

▶ recall the “single-owner rule,” which guarantees there
is only one owning pointer to any node

▶ ⇒ there can be no owning pointers from outside Tv to
inside Tv

▶ ⇒ any such pointer must be a borrowing pointer
▶ crucially, such a borrowing pointer must have a

lifetime parameter of the referent
▶ as a result, a pointer that can reach Tv cannot be

dereferenced after v goes out of scope

time

Tv

v (goes out of scope here)

p (goes out of scope here)

56 / 1

How Rust achieved it?

▶ recall the “single-owner rule,” which guarantees there
is only one owning pointer to any node

▶ ⇒ there can be no owning pointers from outside Tv to
inside Tv

▶ ⇒ any such pointer must be a borrowing pointer
▶ crucially, such a borrowing pointer must have a

lifetime parameter of the referent
▶ as a result, a pointer that can reach Tv cannot be

dereferenced after v goes out of scope

time

impossible

Tv

v (goes out of scope here)

p (goes out of scope here)

56 / 1

How Rust achieved it?

▶ recall the “single-owner rule,” which guarantees there
is only one owning pointer to any node

▶ ⇒ there can be no owning pointers from outside Tv to
inside Tv

▶ ⇒ any such pointer must be a borrowing pointer

▶ crucially, such a borrowing pointer must have a
lifetime parameter of the referent

▶ as a result, a pointer that can reach Tv cannot be
dereferenced after v goes out of scope

time

x : &'a ...

Tv

v (goes out of scope here)

p (goes out of scope here)

56 / 1

How Rust achieved it?

▶ recall the “single-owner rule,” which guarantees there
is only one owning pointer to any node

▶ ⇒ there can be no owning pointers from outside Tv to
inside Tv

▶ ⇒ any such pointer must be a borrowing pointer
▶ crucially, such a borrowing pointer must have a

lifetime parameter of the referent

▶ as a result, a pointer that can reach Tv cannot be
dereferenced after v goes out of scope

time

x : &'a ...

α

Tv

v (goes out of scope here)

'a = lifetime of Tv = α

p (goes out of scope here)

56 / 1

How Rust achieved it?

▶ recall the “single-owner rule,” which guarantees there
is only one owning pointer to any node

▶ ⇒ there can be no owning pointers from outside Tv to
inside Tv

▶ ⇒ any such pointer must be a borrowing pointer
▶ crucially, such a borrowing pointer must have a

lifetime parameter of the referent
▶ as a result, a pointer that can reach Tv cannot be

dereferenced after v goes out of scope

time

x : &'a ...

α

Tv

v (goes out of scope here)

'a = lifetime of Tv = αcannot deref " " after α

p (goes out of scope here)

56 / 1

