Programming Languages (6)
Rust Memory Management

Kenjiro Taura

1/1

2/1

3/1

Rust’s basic idea to memory management

» Rust maintains that, for any live object,

1. there is one and only one pointer that “owns” it (the
owner pointer)

2. “multiple borrowers” : there are arbitrary number of
non-owning pointers (borrowing pointers) pointing to
it, but they cannot be dereferenced after the owning
pointer goes away

» = it can safely reclaim the data when the owning
pointer goes away

“single-owner-multiple-borrowers rule”
borrow
s:

own —»

borrow7

4/1

The rule is enforced statically

» Rust maintains the rule statically (as opposed to
dynamically)

» equivalently,

» compile-time rather than at runtime
» before execution not during execution

5/1

Ways outside the basics

to be sure, there are some ways to get around the rules
1. reference counting ~
» allows multiple owning pointers
» counts the number of owners at runtime, and reclaim
the data when all owning pointers are gone
2. unsafe/raw pointers (= totally up to you)

but they are not specific to Rust, and we’ll not cover them
in the rest of this slide deck

6/1

7/1

Pointer-like data types in Rust

given a type T' (132, struct, enum, ...), below are types
representing “references (pointers) to 77!

1.

&T (pronounced “ref T'”) : immutable borrowing
pointer to data of T (through which you cannot
modify it)

. &mut T (“ref mute T") : mutable borrowing pointer to

data of T' (through which you can modify it)
Box<T> (bozx T) : owning pointer to T
and : shared (reference-counting)
owning pointer to T’
. unsafe pointer to T’

following discussions are focused on &I and Box<T™>

&T
s:
Box<T>——> T
/

& — —

1

we use pointers and references interchangeably

8/1

Pointer-making expressions

given an expression e of type T, below are expressions that
make pointers to the value of e

1. &e (of type &7") : an immutable borrowing pointer
(through which you cannot modify the referent)

2. &mut e (of type &mut 7T') : a mutable borrowing
pointer (through which you can modify the referent)

3. Box::new(e) (of type Box<7>) : an owning pointer

9/1

An example

{
let mut a = S{x: ...}; // allocate memory for S
let b: &S = &a; // make a borrowing pointer to a
let c: &mut S = &mut a; // make a borrowing pointer to a
let o: Box<S> = Box::new(a); // make an owning pointer to a

}

©
[}

[VY

R

> note: type of variables can be omitted (spelled out for
clarity)

» note: the above program violates several rules so it
does not compile

10/1

11/1

Assignments do not copy, but move, the value

» to maintain only one “owner” pointer, an assignment
in Rust moves the value out of righthand side,
disallowing further use of it

X =y;
// y can no longer be used

> ec.g.,

fn foo() {
let a = S{X: cee, ¥ ...};

a—,

12/1

Assignments do not copy, but move, the value

» to maintain only one “owner” pointer, an assignment
in Rust moves the value out of righthand side,
disallowing further use of it

x = y;
// y can no longer be used

> ec.g.,
fn foo() {
1eta=S{X: cee, ¥ },
a.x ...; // OK, as expected a—
a.y ...; // OK, as expected

12/1

Assignments do not copy, but move, the value

» to maintain only one “owner” pointer, an assignment
in Rust moves the value out of righthand side,
disallowing further use of it

x = y;
// y can no longer be used

> ec.g.,
fn foo() {
let a = S{x: ..., y: ...};
a.x ...; // OK, as expected al

a.y ...; // OK, as expected
// the value moves away from a to b
let b = a;

b/

12/1

Assignments do not copy, but move, the value

» to maintain only one “owner” pointer, an assignment
in Rust moves the value out of righthand side,

disallowing further use of it

x = y;
// y can no longer be used

> ec.g.,

fn foo() {
let a = S{x: ..., y: ...};
a.x ...; // OK, as expected
a.y ...; // OK, as expected
// the value moves away from a to b
let b = a;
a.x; // NG, the value has moved out
b.x; // OK

al
b/

12/1

Argument-passing also moves the value

» passing a value to a function also moves the value out

fn foo() {
let a = S{x: ..., y: ...};
a.x ...; // OK, as expected
a.y ...; // OK, as expected o0
}

13/1

Argument-passing also moves the value

» passing a value to a function also moves the value out

fn foo() {
let a = S{x: ..., y: ...};
a.x ...; // OK, as expected
a.y ...; // OK, as expected)] x \
// this also moves the value away from a oL@
f(a);
a.x; // NG, the value has moved out
¥

13/1

Note: exceptions to “assignment moves the value”

» the value-moving assignment
X = y;
// y can no longer be used
contradicts what you have seen
» does it apply to a primitive type, say £647
fn foo() {
let a = 123.456;
// does the value move out from a!?
let b = a;
a + 0.789; // if so, is this invalid!?

}

» answer: no, it does not apply to primitive types like
132, £64, etc.

» a more general answer: it does not apply to data types
that implement Copy trait

14/1

Copy trait

» define your struct with #[derive (Copy, Clone)] like

1 | #[derive(Copy, Clone)]
2 |struct S { ... }

» and assignment or argument-passing of S makes a copy
of righthand side
fn foo() {
let a = S{x: R S
a.x; // OK, as expected a—_
a.y; // OK, as expected

15/1

Copy trait

» define your struct with #[derive (Copy, Clone)] like

1 | #[derive(Copy, Clone)]
2 |struct S { ... }

» and assignment or argument-passing of S makes a copy
of righthand side
fn foo() {
let a = S{x: R S
a.x; // OK, as expected a—_
a.y; // OK, as expected
// the value is copied

b
let b = a; \

15/1

Copy trait

» define your struct with #[derive (Copy, Clone)] like

1 | #[derive(Copy, Clone)]
2 |struct S { ... }

» and assignment or argument-passing of S makes a copy
of righthand side

fn foo() {
let a = S{x: ..., y: ...};
a.x; // OK, as expected
a.y; // OK, as expected

// the value is copied b \
let b = a;

a.x; // OK
b.x; // OK, too

a—,

15/1

Copy types and the single-owner rule

» when a copy is made on every assignment or argument
passing, the single-owner rule is trivially maintained

» below, we will only discuss types not implementing
Copy trait (non-Copy types)

16/1

17/1

Box<71> makes an owning pointer

» making a pointer by Box: :new(v) moves the value out
of v, too, and it becomes the owning pointer

fn foo() {
let a = S{x: ..., y:
a.x; // OK, as expected
a.y; // OK, as expected

b

a—,

18/1

Box<71> makes an owning pointer

» making a pointer by Box: :new(v) moves the value out
of v, too, and it becomes the owning pointer

fn foo() {
let a = S{x: ..., y: ...}
a.x; // OK, as expected
a.y; // OK, as expected
// OK, now o becomes the owning pointer ~ 0 —>
let o = Box::new(a)

al

18/1

Box<71> makes an owning pointer

» making a pointer by Box: :new(v) moves the value out
of v, too, and it becomes the owning pointer

fn foo() {
let a = S{x: ..., y: ...}
a.x; // OK, as expected
a.y; // OK, as expected
// OK, now o becomes the owning pointer ~ 0 —>
let o = Box::new(a)
a.x; // NG, the value has moved out

al

18/1

Box<71> makes an owning pointer

» making a pointer by Box: :new(v) moves the value out
of v, too, and it becomes the owning pointer

fn foo() {
let a = S{x: ..., y: ...}
a.x; // OK, as expected
a.y; // OK, as expected
// OK, now o becomes the owning pointer ~ 0 —>
let o = Box::new(a)
a.x; // NG, the value has moved out
(*0).x; // OK

al

18/1

Box<71> makes an owning pointer

» making a pointer by Box: :new(v) moves the value out
of v, too, and it becomes the owning pointer

fn foo() {
let a = S{x: ..., y: ...}
a.x; // OK, as expected
a.y; // OK, as expected
// OK, now o becomes the owning pointer ~ 0 —>
let o = Box::new(a)
a.x; // NG, the value has moved out
(*0).x; // OK
o.x; // OK. abbreviation of (*0).z

al

18/1

Make no mistake: making Box: :new(v) does not
affect lifetime

» a = Box::new(w) has no effect of making v live longer
» when a goes out of scope, v will be gone

1 | fn foo() {
2 e
8 {
4 let a = S{...};
5 let p = Box::new(a);
6 } // -——— S8{...} will die here, too
7|}
just like
1 | fn foo() {
2 -
8 {
4 let a = S{...};
5 let p = a;
6 Y // --- S{...} will die here
7|}

19/1

Note: difference between T' and Box: : <1T>7

» for any value v of type T, you can only have one and
only one (still usable) variable that refers to v, which is
either of type T' or Box: :<1'>

» in this sense, you can think of 7" as just another kind
of pointer to T' just like Box: : <7T">

» so is there any reason for Rust to have both 7" and
Box: :<T>?

20/1

T and Box: :<1T>

» the distinction becomes important when you reason
about data layout
» struct S { p: T, ... } “embeds” aT into S
» struct U { p: Box<T>, ... } hasp point toa
separately allocated T
» in particular,
» struct S { p: S, ... }isnot allowed, whereas
» struct U { p: Box<U>, ... }is
» the distinction is not important when discussing
lifetimes (you can consider T" a pointer without being
confused)

21/1

A (huge) implication of the single-owner rule (1)

» with only owning pointers (7" and Box<T>),

» you can make trees of T,

» but you cannot make general graphs of T' (acyclic or
cyclic), where a node may be pointed to by multiple
nodes

» if you want to make graphs of T, you use either

» &T to represent edges, or

» Vec<T> to represent nodes and Vec<(i32,i32)> to
represent edges

22/1

A (huge) implication of the single-owner rule (2)

» with only owning pointers, no two names in scope ever
refer to the same object (no aliasing)

» a and b below never refer to the same object

1 | fn take_two(a : Box<T>, b : Box<T>) {
3|}

» a boon for the compiler

» a useful property to avoid mistakes, too

23/1

24/1

Borrowers rule in action

» a borrowing pointer cannot be dereferenced after its
owning pointer is gone
fn foo() -> i32 {
let c: &S; // a reference to S
{ // an inner block

25/1

Borrowers rule in action

» a borrowing pointer cannot be dereferenced after its
owning pointer is gone
fn foo() -> i32 {
let c: &S; // a reference to S
{ // an inner block
let b: &S; // another reference

b:&S

25/1

Borrowers rule in action

» a borrowing pointer cannot be dereferenced after its
owning pointer is gone
fn foo() -> i32 {
let c: &S; // a reference to S
{ // an inner block
let b: &S; // another reference

let a = S{x: ...}; // allocate S
}
}
c: &S
a:s
b:&S

25/1

Borrowers rule in action

» a borrowing pointer cannot be dereferenced after its
owning pointer is gone
fn foo() -> i32 {
let c: &S; // a reference to S
{ // an inner block
let b: &S; // another reference
let a = S{x: ...}; // allocate S
// OK (both a and b live only until the end of the inner block)
b = &a;

b:& —

25/1

Borrowers rule in action

» a borrowing pointer cannot be dereferenced after its
owning pointer is gone
fn foo() -> i32 {
let c: &S; // a reference to S
{ // an inner block
let b: &S; // another reference

let a = S{x: ...}; // allocate S
// OK (both a and b live only until the end of the inner block)
b = &a;
c = b; // dangerous (¢ outlives a)
}

c:& —
b:& —

25/1

Borrowers rule in action

» a borrowing pointer cannot be dereferenced after its
owning pointer is gone
fn foo() -> i32 {
let c: &S; // a reference to S
{ // an inner block
let b: &S; // another reference

let a = S{x: ...}; // allocate S
// OK (both a and b live only until the end of the inner block)
b = &a;

c = b; // dangerous (¢ outlives a)
Y // a dies here, making ¢ a dangling pointer

c:& —!

25/1

Borrowers rule in action

» a borrowing pointer cannot be dereferenced after its
owning pointer is gone
fn foo() -> i32 {
let c: &S; // a reference to S
{ // an inner block
let b: &S; // another reference

let a = S{x: ...}; // allocate S
// OK (both a and b live only until the end of the inner block)
b = &a;

c = b; // dangerous (c outlives a)
Y // a dies here, making ¢ a dangling pointer
c.x // NG (deref a dangling pointer)

}

25/1

A mutable borrowing reference (&mut 77) has an
additional restriction

» a stronger restriction is imposed on &mut T
> you cannot use the originating (owning) pointer (7" or
Box<T™>) or
» derive other borrowing pointers (mutable or not) from
a mutable borrowing reference (&mut 7°)
where a mutable borrowing reference is active in scope
» active &~ may be used in future (omitting details)

1 | fn mut_ref() {

2 let mut a = S{x: ...};

3 let m = &mut a; // make a mutable ref to a

4 ce. @K ... // NG: cannot use a (the originating pointer)
5 let d = &a; // NG: cannot borrow from a either

6 let ¢ = m; // NG: cannot derive another reference

7 m.x // --- m is active up to this point

8 a.x H // OK: as m no longer active here

9 |}

26/1

A mutable borrowing reference enjoys no aliasing,
too (even stronger one)

» like an owning pointer, a mutable reference also enjoys
the no aliasing property

» even more strongly, it cannot alias with other
borrowing references (mutable or not)

» p below cannot be an alias of any of others

» g and r may be an alias of each other

1 | fn take_many(p: &mut 7', q: &7, r: &', a: T, b: Box<T>) {
}

» discussions below are focused on memory management,
and apply both to immutable and mutable references

27 /1

Working with Box<T> or &T

vvyyvyy

v

Box<7T"> and &7 are both pointers
you might naturally wonder which one to use when
generally, use Box<1> to link data structures together

use &1 to work on existing data structures without any
allocation or deallocation

for this reason, many functions that take data
structures as input take &7’

28 /1

29/1

A technical remark about borrowers rule

» it’s not a creation of a dangling pointer, per se, that is
not allowed, but dereferencing of it

» a slightly modified code below compiles without an
error, despite that ¢ becomes a dangling pointer to a
(as it is not dereferenced past a’s lifetime)
fn foo() —> i32 {

let c: &S; // a reference to S
{ // an inner block

let b: &S; // another reference

let a = S{x: ...}; // allocate S
// OK (both a and b live only until the end of the inner block)
b = &a;

c = b; // dangerous (c outlives a)
}// a dies here, making ¢ a dangling pointer
// c.x don’t deref c

}

30/1

A more precise statement of borrowers rule

1. for each borrowing reference (&1" or &mut 7' type),
Rust compiler determines the lifetime of data it points
to (referent lifetime) as part of its static type

fn foo() -> i32 {
let c: &S; // — 27

{
let b: &S; // — ?¢
let a = S{x: ...};
b = &a;
c = Db;
Y // a dies here (o)
c.x

}

31/1

A more precise statement of borrowers rule

1. for each borrowing reference (&1" or &mut 7' type),
Rust compiler determines the lifetime of data it points
to (referent lifetime) as part of its static type

2. assignment between borrowing pointers (p = ¢) equate
their referent lifetimes

fn foo() -> i32 {
let c: &S; // — 27

{
let b: &S; // — ?¢
let a = S{x: ...};
b = &a;
c = Db;
Y // a dies here (o)
c.x

}

31/1

A more precise statement of borrowers rule

1. for each borrowing reference (&1" or &mut 7' type),
Rust compiler determines the lifetime of data it points
to (referent lifetime) as part of its static type

2. assignment between borrowing pointers (p = ¢) equate
their referent lifetimes

fn foo() -> i32 {
let c: &S; // — 27

{
let b: &S; // —«
let a = S{x: ...}; // lives until
b = &a; // b’s referent lifetime = a’s lifetime
c = Db;
Y // a dies here (o)
c.x

}

31/1

A more precise statement of borrowers rule

1. for each borrowing reference (&1" or &mut 7' type),
Rust compiler determines the lifetime of data it points
to (referent lifetime) as part of its static type

2. assignment between borrowing pointers (p = ¢) equate
their referent lifetimes

fn foo() -> i32 {
let c: &S; // —«
{
let b: &S; // —«
let a = S{x: ...}; // lives until
b = &a; // b’s referent lifetime = a’s lifetime
c =Db; // c’s referent lifetime = b’s referent lifetime
Y // a dies here (o)

Cc.X

}

31/1

A more precise statement of borrowers rule

1. for each borrowing reference (&1" or &mut 7' type),
Rust compiler determines the lifetime of data it points
to (referent lifetime) as part of its static type

2. assignment between borrowing pointers (p = ¢) equate
their referent lifetimes

3. dereferencing a borrowing pointer p (e.g., p.x) is
allowed only within the p’s referent lifetime

fn foo() -> i32 {
let c: &S; // —«
{
let b: &S; // —«
let a = S{x: ...}; // lives until
b = &a; // b’s referent lifetime = a’s lifetime
c =Db; // c’s referent lifetime = b’s referent lifetime
Y // a dies here (o)

Cc.X

}

31/1

A more precise statement of borrowers rule

1. for each borrowing reference (&1" or &mut 7' type),
Rust compiler determines the lifetime of data it points
to (referent lifetime) as part of its static type

2. assignment between borrowing pointers (p = ¢) equate
their referent lifetimes

3. dereferencing a borrowing pointer p (e.g., p.x) is
allowed only within the p’s referent lifetime

fn foo() -> i32 {
let ¢c: &S; // —«
{
let b: &S; // —«
let a = S{x: ...}; // lives until
b = &a; // b’s referent lifetime = a’s lifetime
c =Db; // c’s referent lifetime = b’s referent lifetime
Y // a dies here (o)
c.x // NG (deref outside c’s referent lifetime = «)

}

31/1

Programming with borrowing references

» programs using borrowing references must help
compilers track their referent lifetimes

» this must be done for functions called from unknown
places, function calls to unknown functions and data
structures

» to this end, the programmer sometimes must annotate
reference types with their referent lifetimes

32/1

References in function parameters

>

O N

problem: how to check the validity of functions taking
references

fn p_points_q(p: &mut P, q: &Q) {
p-x = q; // OK?
}

without knowing all its callers, and function calls
passing references

let c = ...;

{
let a = Q{...};
let b = &a;
f(c, b);

}
... c.x.y ... // OK?

without knowing the definition of £7

33/1

References in function return values

>

BN S

S O

S N Y

problem: how to check the validity of functions
returning references

fn return_ref(...) -> &P {
let p: &P = ...

b // OK?
}

without knowing its all callers, and function calls
receiving references from function calls

fn receive_ref() {
let p: &P = return_ref(...);
p.x // OK?

}

34/1

References in data structures

» problem: how to check the validity of dereferencing a
pointer obtained from a data structure

fn ref_from_struct() {
let p: &P = a.p;
p.x // OK?

1
2
2
4
5
6 |}

» what about functions taking data structures containing
references and returning another containing references,
etc.?

35/1

Reference type with a lifetime parameter

» to address this problem, Rust’s borrowing reference
types (&7 or &mut T') carry lifetime parameter
representing their referent lifetimes

> syntax:

» &’a T : reference to “I" whose lifetime is ’a”
» &’a mut T : ditto; except you can modify data
through it

T

lives until 'a

» cvery reference carries a lifetime parameter, though
there are places you can omit them

» roughly, you must write them explicitly in function
parameters, return types, and struct/enum fields; and

can omit them for local variables
36/ 1

Reference type with a lifetime parameter

» to address this problem, Rust’s borrowing reference
types (&7 or &mut T') carry lifetime parameter
representing their referent lifetimes

> syntax:

» &’a T : reference to “I" whose lifetime is ’a”
» &’a mut T : ditto; except you can modify data
through it

T

&aT

lives until 'a

» cvery reference carries a lifetime parameter, though
there are places you can omit them

» roughly, you must write them explicitly in function
parameters, return types, and struct/enum fields; and

can omit them for local variables
36/ 1

Attaching lifetime parameters to functions

» the following does not compile

1 | fn foo(ra: &i32, rb: &i32, rc: &i32) -> &i32 {
2 ra

3|}

» with errors like

11

2 | fn foo(ra: &i32, rb: &i32, rc: &i32) -> &i32 {

3 | -— -— - ~ expected named lifetime parameter

411

5 = help: this function’s return type contains a borrowed value, but the signature does not
say whether it is borrowed from ‘ra‘, ‘rb‘, or ‘rc‘

6 | help: consider introducing a named lifetime parameter

701

8 | fn foo<’a>(ra: &’a i32, rb: &’a i32, rc: &’a i32) -> &’a i32 {

9 | i+t ++ ++ ++ ++

37/1

Why do we need an annotation, fundamentally?

» without any annotation, how to know whether this is
safe, without knowing the definition of foo?

{
let r : &i32;
let a = 123;
{
let b = 456;
{
let ¢ = 789;
r = foo(&a, &b, &c);
}

P N ™ W e~

©

10 }
11 *r
12 |}

» essentially, the compiler complains “tell me what kind
of lifetime foo(&a, &b, &c) has”

38/ 1

Attaching lifetime parameters to functions

P> syntax:
1 (fn <’a,’b,’¢c,...>(o : To, p1 : T, ...) > T { ... }
Ty, Ty, --- and T, may use ’a, ’b, ’c, ... as

lifetime parameters (e.g., &’a 132)
» f<’a,’b,’c,...>is a function that takes parameters
of respective lifetimes

39/1

One way to attach lifetime parameters

>

1

>

>

v

~
SO YD G e =

~
~

12
13

(fn foo<’a>(ra: &’a i32, rb: &’a i32, rc: &’a i32) -> &’a i32

effect: the return value is assumed to point to the
shortest of the three

why? generally, when Rust compiler finds foo(z, y,
z), it tries to determine ’a so that it is contained in
the lifetime of all (z, y and z)

as a result, our program does not compile, even if
foo(&a, &b, &c) in fact returns &a

{
let r: &i32;
let a = 123;
{
let b = 456;
{
let ¢ = 789;
r = foo(&a, &b, &c); // ’a < shortest of {a, 8,7} =~
// and r’s type becomes &y i32
} // ¢’s lifetime (= ~) ends here
} // b’s lifetime (= B) ends here
*r // NG, as we are outside ~y
} // a’s lifetime (= o) ends here

40/1

An alternative

>

1

>

» for foo(x, vy, z), Rust compiler tries to determine ’a

| 2

~
SO YD G e =

~
~

12
13

(fn foo<’a,’b,’ c>(ra: &’a i32, rb: &’b i32, rc: & i32) -> &’a i32

signifies that the return value points to data whose
lifetime is ra’s referent lifetime (and has nothing to do
with rb’s or rc’s)

so it is contained in the lifetime of x’s referent
(therefore ’a = «)
as a result, the program we are discussing compiles

{
let r: &i32;
let a = 123;
{
let b = 456;
{
let ¢ = 789;
r = foo(%a, &b, &c); // ’a — shortest of {a} = «
// and r’s type becomes &o 132
} // ¢’s lifetime (= ~) ends here
} // b’s lifetime (= B) ends here
*r // OK, as here is within o
} // a’s lifetime (= o) ends here

41/1

Types with lifetime parameters capture/constrain
the function’s behavior

» what if you try to fool the compiler by

1 | fn foo<’a,’b,’c>(ra: &’a i32, rb: &’b i32, rc: & i32) -> &’a i32
2 rb
3|}

» the compiler rejects returning rb (of type &’b) when
the function’s return type is &’a

» in general, the compiler allows assignments only
between references having the same lifetime parameter

42/1

Another example (make a reference between
inputs)

» what if we rewrite

1 [r = foo(&a, &b, &c);

mto

1 [bar(&mut r, &a, &b, &c);

with bar something like

~

fn bar(r: &mut &i32, a: &i32, b: &i32, c: &i32) {
2 *r = a;

3|}

43/1

Make a reference between inputs

» how to specify lifetime parameters so that

1. *r = a; in bar’s definition is allowed, and
2. we can dereference *r at the end of the caller?

bar (gmut r, &a, &b, &c); // r — 777
} // c¢’s lifetime (= ~) ends here
10 } // b’s lifetime (= B) ends here
11 *r // OK???
12 | '} // a’s lifetime (= o) ends here

1|1

2 let a = 123;

3 let mut r = &0;
4

5 let b = 456;
6 {

7 let c = 789;
8

9

44 /1

Answer

> again, we need to signify r points to a (and not b or ¢
after bar (&r, &a, &b, &c)

» a working lifetime parameter is the following

1 | fn bar<’a,’b,’c>(r: &mut &’a i32, a: &’a i32,
2 b: &’b i32, c: & i32) {
3 *r = a;
4

}

45/1

References in data structures

» problem: how to check the validity of programs using

data structure containing a borrowing reference

struct R {
p: %i32

RSSO S

}

and functions returning R

1 | fn ret_r(a: &i32, b: &i32, c: &i32) -> R {
2 R{p: a}
3|}

or taking R (or reference to it)

1 | fn take_r(r: &mut R, a: &i32, b: &i32, c: &i32) {
2 r.p = a;

31}

46 /1

References in data structures

» you cannot simply have a field of type &7 in
struct /enum like this

struct R {
p: &i32

BN S

}

» you need to specify the lifetime parameter of p, and
signifies that R takes a lifetime parameter

struct R<’a> {
p: &’a i32

BN S

}

» R<’a> represents R whose p field points 132 whose
lifetime is ’a

47 /1

Attaching lifetime parameters to data structure

» say we like to have data structures

1 | struct T { x: i32 }
2 | struct S { p: &T }

and a function

1 (fn make_s(a: &T, b: &T) -> 8 { S{p: a} } i

so that the following compiles

let s;
let a = T{...};
{
let b = T{...};
s = make_s(&a, &b);

QL G o

S.p.X

» the compiler needs to verify s.p points to a, not b

» we have to signify that by appropriate lifetime
parameters

48/1

Answer

» define S<’a> so

» its p’s referent lifetime is ’a

1 [struct S<’a> { p: &’a T }

» define make_s so it returns S<’a> where ’a is the
referent lifetime of its first parameter

1 | fn make_s(a: &’a T, b: &’b T) -> S<’a> {
2 S{p: a}
3|}

49/1

A more complex example Rust cannot verify

» say we now have data structures

struct T { x: i32 }
struct S {

p: &T,

q: &T
¥

Guds oo =

and a function

1 (fn make_s(a: &T, b: &T) -> S { S{p: a, q: b} } i

so that the following compiles

1 let s;

2 let a = T{...};

3 {

4 let b = T{...};

5 s = make_s(&a, &b);
6 ¥

7 S.p.X

» again, the compiler needs to verify s.p points to a, not
b

50/ 1

Answer that I thought should work but didn’t

» define S so

» its p points to T of lifetime ’a and
» its q points to T of lifetime b

1 | struct S<’a, ’b> {
2 p: &’a T,

3 q: &b T

4|}

» define make_s so it returns S<’a, ’b> where ’a is the
lifetime of its first parameter, like

1 | fn make_s(a: &’a T, b: &’b T) -> S<’a, ’b> {
2 S{p: a, q: b}
3|}

51/1

The compiler complains

~
S R S e N S

~
N©

[E0597] Error: ‘b‘ does not live long enough
[command_36:1:1]
16 | s = make_s(&a, &b);
. +--- borrowed value does not live long enough
17 |}

. +-—— ‘b dropped here while still borrowed
18 | s.p.x

Fo——— borrow later used here

» I don’t know what is the exact spec of Rust that
rejects this program, but I hypothesize that to
dereference s for any field (p), all fields must be alive

52/1

53/1

Why memory management is difficult

> every language wants to prevent dereferencing a
pointer to an already-reclaimed memory block (dangling

pointer)

let v =

T{x:

54/1

Why memory management is difficult

> every language wants to prevent dereferencing a
pointer to an already-reclaimed memory block (dangling
pointer)

» the problem would have been trivial if you could
reclaim v’s referent as soon as v goes out of scope

let v = T{x: ...};

54/1

Why memory management is difficult

> every language wants to prevent dereferencing a
pointer to an already-reclaimed memory block (dangling

pointer)
» the problem would have been trivial if you could
reclaim v’s referent as soon as v goes out of scope

{

let v = T{x: ...};

} // OK to drop v’s referent here?

54/1

Why memory management is difficult

> every language wants to prevent dereferencing a
pointer to an already-reclaimed memory block (dangling
pointer)

» the problem would have been trivial if you could
reclaim v’s referent as soon as v goes out of scope

» this is not the case, as v’s referent may still be
reachable from other variables when v goes out of scope

let v = T{x: ...};

54/1

Why memory management is difficult

> every language wants to prevent dereferencing a
pointer to an already-reclaimed memory block (dangling
pointer)

» the problem would have been trivial if you could
reclaim v’s referent as soon as v goes out of scope

» this is not the case, as v’s referent may still be
reachable from other variables when v goes out of scope

let p : &T;
{
let v = T{x: ...}; P \l‘
p = &v;
Y // v never used below, but its referent is
P.-X ...

54/1

C vs. GC vs. Rust

» C/C++ : it’s up to you

C/C++ GC Rust
p

55/ 1

C vs. GC vs. Rust

» C/C++ : it’s up to you
» GC : if it is reachable from other variables, I retain it
for you

C/C++ GC Rust

55/ 1

C vs. GC vs. Rust

» C/C++ : it’s up to you

» GC : if it is reachable from other variables, I retain it
for you

» Rust : when v goes out of scope,

1. I reclaim T, all data reachable from v through owning
pointers

2. T, may be reachable from other variables via
borrowing references, but I nevertheless guarantees a
reclaimed memory block is never accessed

C/C++ GC Rust

p/—\ p/\Q p’X—\

55/ 1

How Rust achieved it?

2

» recall the “single-owner rule,” which guarantees there
is only one owning pointer to any node

P (goes out of scope here) <]

time

56/ 1

How Rust achieved it?

» recall the “single-owner rule,” which guarantees there
is only one owning pointer to any node

» = there can be no owning pointers from outside T, to
inside T,

Tv

impossible

P (goes out of scope here)

time

56/ 1

How Rust achieved it?

» recall the “single-owner rule,” which guarantees there
is only one owning pointer to any node

» = there can be no owning pointers from outside T, to
inside T,

» = any such pointer must be a borrowing pointer

Tv
V (goes out of scope here)
D (goes out of scope here) «

time

56/ 1

How Rust achieved it?

» recall the “single-owner rule,” which guarantees there
is only one owning pointer to any node

» = there can be no owning pointers from outside T, to
inside T,

» = any such pointer must be a borrowing pointer

» crucially, such a borrowing pointer must have a
lifetime parameter of the referent

‘a = lifetime of Tv = a

P (goes out of scope here)

;
me 56/1

How Rust achieved it?

>

recall the “single-owner rule,” which guarantees there
is only one owning pointer to any node

= there can be no owning pointers from outside 7}, to
inside T,

= any such pointer must be a borrowing pointer
crucially, such a borrowing pointer must have a
lifetime parameter of the referent

as a result, a pointer that can reach T, cannot be
dereferenced after v goes out of scope

V (goes out of scope here)

cannot deref "—" after o ‘a = lifetime of Tv = a

P (goes out of scope here)

;
me 56/1

