
Programming Languages (6)

Memory Management

Kenjiro Taura

1 / 19

Contents

1 Introduction

2 Manual Memory Management in C/C++

2 / 19

Contents

1 Introduction

2 Manual Memory Management in C/C++

3 / 19

Memory management in programming languages

all data (integers, floating point numbers, strings, arrays,
structs, . . .) used in a program need a space (register or
memory) to hold them

ideally, programming languages manage them on behalf of
the programmer; i.e.,

▶ when creating a new data, find an available space for it
▶ retain the space as long as the data is still “in use”
▶ reclaim/reuse the space when the data is “no longer used”

three approaches covered
manual C, C++

garbage collection
traversing

Python, Java, Julia, Go, OCaml, etc.
reference counting

Rust ownership Rust

4 / 19

Data representation

data in your program must be somehow represented in the
machine code

some data (e.g., integers and floating point numbers) can be
trivially mapped to machine representations

less trivial is how to map
▶ multiword data (structs),
▶ unknown-size or large data (e.g., arrays and strings),
▶ mutable data,
▶ recursive data (lists),
▶ etc.

5 / 19

Two strategies

immediate

p 789

memory

registers or memory

indirect

p 0x1230

memory

registers or memory

456; 789
0x1230:

6 / 19

Immediate representation

typically used for small data (integers, floating point
numbers, characters, etc.) that fit on a single register (e.g.,
64 bits)

upon an assignment-like operation, the whole data gets
copied (cheap as data are small)

p 789

memory

registers or memory

7 / 19

Immediate representation

typically used for small data (integers, floating point
numbers, characters, etc.) that fit on a single register (e.g.,
64 bits)

upon an assignment-like operation, the whole data gets
copied (cheap as data are small)

p q = p789

memory

registers or memory

7 / 19

Immediate representation

typically used for small data (integers, floating point
numbers, characters, etc.) that fit on a single register (e.g.,
64 bits)

upon an assignment-like operation, the whole data gets
copied (cheap as data are small)

p q = p789 p

q

memory

registers or memory registers or memory

memory

789

789

7 / 19

Indirect representation

typically used for multi-word data

upon an assignment-like operation, there are two choices

1 (by-value) copies the whole data, or
2 (by-reference) copies only the address (pointer) and share

data in memory

p 0x1230

memory

registers or memory

456; 789
0x1230:

8 / 19

Indirect representation

typically used for multi-word data

upon an assignment-like operation, there are two choices

1 (by-value) copies the whole data, or
2 (by-reference) copies only the address (pointer) and share

data in memory

p q = p0x1230

memory

registers or memory

456; 789
0x1230:

8 / 19

Indirect representation

typically used for multi-word data

upon an assignment-like operation, there are two choices
1 (by-value) copies the whole data, or

2 (by-reference) copies only the address (pointer) and share
data in memory

p q = p0x1230 p

q

memory

registers or memory registers or memory
0x1230

0x1240

456; 789
0x1230: 0x1230:

memory

0x1240:

456; 789 456; 789

8 / 19

Indirect representation

typically used for multi-word data

upon an assignment-like operation, there are two choices
1 (by-value) copies the whole data, or
2 (by-reference) copies only the address (pointer) and share

data in memory

p q = p0x1230 p

q

memory

registers or memory registers or memory
0x1230

0x1230

456; 789
0x1230: 0x1230:

memory
456; 789

8 / 19

By-value vs. by-reference?

it affects behavior (semantics) of mutable data; e.g.,�
1 p = Point{x=456, y=789};

2 q = p; // by-value or by-reference?

3 p.x = 1000;

4 print(q.x) // 456 or 1000?

therefore, for mutable data, by-reference is the only choice

the choice does not affect the semantics of immutable data, so
it is up to implementation

p q = p0x1230 p

q

memory

registers or memory registers or memory
0x1230

0x1240

456; 789
0x1230: 0x1230:

memory

0x1240:

456; 789 456; 789

p q = p0x1230 p

q

memory

registers or memory registers or memory
0x1230

0x1230

456; 789
0x1230: 0x1230:

memory
456; 789

by-value by-reference

9 / 19

Other data implemented typically

passed-by-references

besides mutable data, other data types whose assignment-like
operations we want to implement by reference include

▶ large data
▶ recursive data
▶ unknown-size data

why? ⇒ we don’t want to impose large copying overhead
whenever such values go through assignment-like operations

for examples, strings, arrays, trees, graphs, etc.

10 / 19

The root of the problem

were there no data implemented by reference, memory
management problem would be largely non-existent

▶ if a variable is gone, the data it points to is gone, too

the difficulty arises as soon as data are shared (i.e., whose
address may be held at multiple locations)

▶ yet it is essential/unavoidable to implement mutable and/or
implement large data efficiently, among others

p q = p0x1230 p

q

memory

registers or memory registers or memory
0x1230

0x1240

456; 789
0x1230: 0x1230:

memory

0x1240:

456; 789 456; 789

p q = p0x1230 p

q

memory

registers or memory registers or memory
0x1230

0x1230

456; 789
0x1230: 0x1230:

memory
456; 789

by-value by-reference

11 / 19

The fundamental problem

the problem is how to know which memory block can be
safely reclaimed/reused when

▶ there may be multiple pointers to a single memory block,
▶ which allow arbitrary graph of memory blocks

main :

f :

g :

h :
x

p

r

q
y

z
active function calls

global variables

s
t

12 / 19

A few remarks on “by-reference” vs. “by-value”

some languages distinguish a data type (T) from a reference
(pointer) to T

▶ C/C++ : pointer (T*)
▶ Go : pointer (*T)
▶ Rust : box (Box::<T>) and refernce (&T)

in other languages, there are no such distinction
▶ OCaml, Julia, Python, etc.

no matter what the language looks like from the
programmer’s perspective, the fundamental problem is the
same

▶ many (mutable, recursive, or large) data structures are
passed by reference, leading to multiple references to a
memory block

13 / 19

Contents

1 Introduction

2 Manual Memory Management in C/C++

14 / 19

Memory allocation in C/C++

1 Global variables/arrays

2 Local variables/arrays

3 Heap

�
1 int g; int ga[10];

2 int foo() {

3 int l; int la[10];

4 int * a = &g;

5 int * b = ga;

6 int * c = &l;

7 int * d = la;

8 int * e = malloc(sizeof(int));

9 }

lifetime
starts ends

global when the program starts when program ends
local when a block starts when a block ends
heap malloc, new free, delete

note: the following discussion calls all of them objects

15 / 19

What could go wrong in manual memory

management (e.g., C/C++)?

heap-allocated (i.e., new/malloc’ed) memory must be
delete/freed at the right spot

▶ premature free = using it after delete/free → memory
corruption�

1 node * foo() {

2 node * m = new node("Mimura");

3 node * o = m;

4 delete m;

5 ... o->name ...

6 }

▶ memory leak = not delete/freeing no-longer-used memory
→ (eventually) out of memory�

1 node * foo() {

2 node * m = new node("Mimura");

3 node * o = new node("Ohtake");

4 return o;

5 }
16 / 19

What could go wrong in manual memory

management (e.g., C/C++)?

stack-allocated memory are automatically reclaimed when it
goes out of scope

▶ using it afterwards ≡ premature delete�
1 node * foo() {

2 node m = node("Mimura");

3 node o = node("Ohtake");

4 return &o;

5 }�
1 node * foo() {

2 node m = node("Mimura");

3 node * o = new node("Ohtake");

4 o->friend = &m;

5 return o;

6 }

17 / 19

Tools to make C/C++ memory management safer

valgrind (memory checker)
▶ detect memory-related errors (use after free, memory leak,

out of bound accesses, etc.)

Boehm garbage collection library for C/C++
▶ automatically garbage-collect memory blocks allocated by

malloc/new

18 / 19

Note : it is not a pointer that is to blame

C/C++ are notriously unsafe languages

a common misconception is they are unsafe because they
expose pointers to the programmer

sure, many features that make C/C++ unsafe are related to
pointers in one way or another,

yet this is a misconception because
▶ eliminating pointers from the surface of a language does not

solve the memory management problem, and
▶ languages exposing pointers can be made safe

19 / 19

	Introduction
	Manual Memory Management in C/C++

