Programming Languages (6)
Memory Management

Kenjiro Taura

1/19

Contents

@ Introduction

© Manual Memory Management in C/C++

2/19

© Introduction

© Manual Memory Management in C/C++

3/19

Memory management in programming languages

e all data (integers, floating point numbers, strings, arrays,
structs, ...) used in a program need a space (register or
memory) to hold them

o ideally, programming languages manage them on behalf of
the programmer; i.e.,

» when creating a new data, find an available space for it
» retain the space as long as the data is still “in use”
» reclaim/reuse the space when the data is “no longer used”

e three approaches covered

manual

C, C++

garbage collection

traversing
reference counting

Python, Java, Julia, Go, OCaml, etc.

Rust ownership

Rust

4/19

Data representation

e data in your program must be somehow represented in the
machine code

e some data (e.g., integers and floating point numbers) can be
trivially mapped to machine representations

@ less trivial is how to map

multiword data (structs),

unknown-size or large data (e.g., arrays and strings),
mutable data,

recursive data (lists),

ete.

vV vV VvV VY

v

5/19

Two strategies

e immediate

registers or memory

o[

memory

@ indirect

registers or memory

pforaa]

memory

[[ssezea] [[[T TTTTTTTTT]

0x1230:

6/19

Immediate representation

e typically used for small data (integers, floating point
numbers, characters, etc.) that fit on a single register (e.g.,
64 bits)

registers or memory
p| 789

memo

ry
LT

7/19

Immediate representation

e typically used for small data (integers, floating point
numbers, characters, etc.) that fit on a single register (e.g.,
64 bits)

e upon an assignment-like operation, the whole data gets
copied (cheap as data are small)

registers or memory
p| 789 q=p

memo

ry
LT

7/19

Immediate representation

e typically used for small data (integers, floating point
numbers, characters, etc.) that fit on a single register (e.g.,
64 bits)

e upon an assignment-like operation, the whole data gets
copied (cheap as data are small)

registers or memory registers or memory
p| 789 q=p p| 789
e
q| 789
memory memory

7/19

Indirect representation

e typically used for multi-word data

registers or memory
P10x1230

memory

L[essizes T [[TTTTTLI1]

0x1230:

8/19

Indirect representation

e typically used for multi-word data
e upon an assignment-like operation, there are two choices

registers or memory
P10x1230 q=p

memory

L[essizes T [[TTTTTLI1]

0x1230:

8/19

Indirect representation

e typically used for multi-word data

e upon an assignment-like operation, there are two choices
© (by-value) copies the whole data, or

registers or memory registers or memory
P10x1230 q=p 0x1230

— /g

memory memory
UL essizeo I [[{TTTTTI00) [TIssemes T 11117 [[esees
0x1230: 0x1230: 0x1240:

8/19

Indirect representation

e typically used for multi-word data

e upon an assignment-like operation, there are two choices
© (by-value) copies the whole data, or

© (by-reference) copies only the address (pointer) and share
data in memory

registers or memory registers or memory
P10x1230 q=p pfox1230

— /o

memory memory

L essize T [[{{TITTTLI] (TsssmsT TTTTTTTTTTTIT]

0x1230: 0x1230:

8/19

By-value vs. by-reference?

e it affects behavior (semantics) of mutable data; e.g.,

1 | p = Point{x=456, y=789};
2 |q=rp;
3 | p.x = 1000;

4 | print(q.x) // 456 or 10007

// by-value or by-reference?

e therefore, for mutable data, by-reference is the only choice

e the choice does not affect the semantics of immutable data, so

it is up to implementation

registers or memory registers or memory

registers or memory registers or memory

pfoiz] a=p pfoizq a=p
B SRR
— -
456; 789 456; 789 456; 789 456; 789 456; 789
[T (TR S 1 [T O LA
by-value by-reference

9/19

Other data implemented typically
passed-by-references

@ besides mutable data, other data types whose assignment-like
operations we want to implement by reference include

» large data
» recursive data
» unknown-size data

e why? = we don’t want to impose large copying overhead
whenever such values go through assignment-like operations

e for examples, strings, arrays, trees, graphs, etc.

10/19

The root of the problem

e were there no data implemented by reference, memory
management problem would be largely non-existent

» if a variable is gone, the data it points to is gone, too

e the difficulty arises as soon as data are shared (i.e., whose
address may be held at multiple locations)
» yet it is essential/unavoidable to implement mutable and/or
implement large data efficiently, among others

registers or memory registers or memory registers or memory registers or memory
pfoxi23g a=p pfoxi23q a=p
- -
memory memory memory memory
4561 789 [Tz [T T T eseream] 4561 789 456, 789
St St e S o
by-value by-reference

11/19

The fundamental problem

@ the problem is how to know which memory block can be
safely reclaimed /reused when
» there may be multiple pointers to a single memory block,
» which allow arbitrary graph of memory blocks

global variables

12/19

A few remarks on “by-reference” vs. “by-value”

e some languages distinguish a data type (7) from a reference
(pointer) to T
» C/C++ : pointer (T*)
» Go : pointer (*7)
» Rust : box (Box::<7T>) and refernce (&7)
e in other languages, there are no such distinction
» OCaml, Julia, Python, etc.

e no matter what the language looks like from the
programmer’s perspective, the fundamental problem is the
same

» many (mutable, recursive, or large) data structures are
passed by reference, leading to multiple references to a
memory block

13/19

@ Introduction

© Manual Memory Management in C/C++

14/19

Memory allocation in C/C++

o

1 | int g; int ga[10];
2 |int foo() {
. 3 int 1; int la[10];
@ Global variables/arrays || int * a = tg;
. s Y 5 int * b = ga;
@ Local variables/arrays ol int s -
7 int * d = la;
8 int * e =
9 |}
o lifetime
starts ends

local | when a block starts
malloc, new

global | when the program starts

when program ends
when a block ends
free, delete

e note: the following discussion calls all of them objects

15/19

What could go wrong in manual memory
management (e.g., C/C++)?

@ heap-allocated (i.e., new/malloc’ed) memory must be
delete/freed at the right spot

» premature free = using it after delete/free — memory

RN TSI SR

S >

S N

corruption

node * foo() {

node * m = new node("Mimura");
node * o = m;
delete m;
. o->name ...
}

memory leak = not delete/freeing no-longer-used memory
— (eventually) out of memory

node * foo() {
node * m = new node("Mimura");
node * o = new node("Ohtake");
return o;

}

What could go wrong in manual memory
management (e.g., C/C++)?

e stack-allocated memory are automatically reclaimed when it

goes out of scope
» using it afterwards = premature delete

node * foo() {
node m = node("Mimura");
node o = node("Ohtake");
return &o;

}

S N I

node * foo() {
node m = node ("Mimura") ;
node * o = new node("Ohtake");
o->friend = &m;
return o;

}

R N

[SN

17/19

Tools to make C/C++ memory management safer

e valgrind (memory checker)

» detect memory-related errors (use after free, memory leak,
out of bound accesses, etc.)

e Boehm garbage collection library for C/C++

» automatically garbage-collect memory blocks allocated by
malloc/new

18/19

Note : it is not a pointer that is to blame

o C/C++ are notriously unsafe languages

@ a common misconception is they are unsafe because they
expose pointers to the programmer

e sure, many features that make C/C++ unsafe are related to
pointers in one way or another,

e yet this is a misconception because

» eliminating pointers from the surface of a language does not
solve the memory management problem, and
» languages exposing pointers can be made safe

19/19

	Introduction
	Manual Memory Management in C/C++

