
Programming Language (5)

Basics of Programming Language

Implementation

田浦

1 / 22

Contents

1 Introduction

2 CPU and machine code : An overview

3 A glance at x86 machine (assembly) code

2 / 22

Contents

1 Introduction

2 CPU and machine code : An overview

3 A glance at x86 machine (assembly) code

3 / 22

Two basic forms of language implementation

interpreter: interprets and executes programs (takes a
program and an input; and computes the output)

compiler: translates programs into a machine (assembly)
code, that can directly execute by the processor

▶ ahead-of-time (AOT): the entire program is compiled before
execution

▶ just-in-time (JIT): programs are incrementally compiled as
they get executed (e.g., a function at a time)

regardless of details, the central issue is how to translate a source
program → machine code

4 / 22

Why do you want to build a language, today?

new hardware
▶ GPUs (CUDA, OpenACC, OpenMP), AI chips, Quantum,

. . .
▶ new instruction set (e.g., SIMD, matrix, . . .) of the processor

new general purpose languages
▶ Scala, Julia, Go, Rust, etc.

special purpose (domain specific) languages
▶ statistics (R, MatLab, etc.)
▶ data processing (SQL, NoSQL, SPARQL, etc.)
▶ deep learning
▶ constraint solving, proof assistance (Coq, Isabelle, etc.)
▶ macro (Visual Basic (MS Office), Emacs Lisp (Emacs),

Javascript (web browser), etc.)

5 / 22

Contents

1 Introduction

2 CPU and machine code : An overview

3 A glance at x86 machine (assembly) code

6 / 22

What a machine (assembly) code looks like

it is just another programming language

it has many features present in programming languages
source machine code
expressions arithmetic instructions
if statement compare / conditional jump instructions
variables registers and memory
structs and arrays memory and load/store instructions

compilation is nothing like a magic; it’s more like trans-
lating English to French

7 / 22

What a CPU (core) looks like

a small number (typically < 100) of registers
▶ each register can hold a small amount of (e.g., 64 bit) data

majority of data are stored in memory (a few to ∼ 1000 GB)

registers

a (virtual) core

main memory

0 1 2 ...address

8 / 22

Memory

where majority of data your program processes are stored

memory is essentially a large flat array indexed by integers,
often called addresses

an address is just an integer

registers

a (virtual) core

main memory

0 1 2 ...address

9 / 22

What a CPU (core) does

a special register, called program counter or instruction
pointer specifies the address to fetch the next instruction at
a CPU core is essentially a machine that does the following�

1 repeat:

2 inst = memory[program counter]
3 execute inst

an instrcution
▶ performs some computation of values on a few registers or a

memory location, and
▶ changes the program counter (typically to the next

instruction on memory)
registers

a (virtual) core

main memory

0 1 2 ...address

10 / 22

Exercise objectives

pl06 how it gets compiled

learn how a compiler does the job,

by inspecting assembly code generated from functions of the
source language

11 / 22

Contents

1 Introduction

2 CPU and machine code : An overview

3 A glance at x86 machine (assembly) code

12 / 22

The first glance

�
1 .file "add123.go"

2 .section .go_export,"",@progbits

3
4 ...

5
6 .text

7 .globl go_0pl06.Add123

8 .type go_0pl06.Add123, @function

9 go_0pl06.Add123:

10 .LFB0:

11 .cfi_startproc

12 cmpq %fs:112, %rsp

13 jb .L3

14 .L2:

15 leaq 123(%rdi), %rax

16 ret

17 .L3:

18 movl $0, %r10d

19 movl $0, %r11d

20 call __morestack

21 ret

22 jmp .L2

23 .cfi_endproc

24 .LFE0:

25 .size go_0pl06.Add123, .-go_0pl06.Add123

26 .globl go.pl06..types

27
28 ...

looks scary? 13 / 22

Unimportant lines

�
1 .file "add123.go"

2 .section .go export,"",@progbits

3
4 ...

5
6 .text

7 .globl go 0pl06.Add123

8 .type go 0pl06.Add123, @function

9 go 0pl06.Add123:

10 .LFB0:

11 .cfi startproc

12 cmpq %fs:112, %rsp

13 jb .L3

14 .L2:

15 leaq 123(%rdi), %rax

16 ret

17 .L3:

18 movl $0, %r10d

19 movl $0, %r11d

20 call __morestack

21 ret

22 jmp .L2

23 .cfi endproc

24 .LFE0:

25 .size go 0pl06.Add123, ...

26 .globl go.pl06..types

27
28 ...

indented lines beginning with a
dot (e.g., .file, .section,

.ascii, .text, .globl, . . .)
are not instructions and largely
not interesting or import

lines with a symbol followed by a
colon (e.g., .L2:, .LFE0:,

go 0pl06.Many args:, . . .) are
labels and used for the target of
jump instructions or call
instructions

14 / 22

Where to look

�
1
2
3
4
5
6
7
8
9 go 0pl06.Add123:

10 .LFB0:

11
12 cmpq %fs:112, %rsp

13 jb .L3

14 .L2:

15 leaq 123(%rdi), %rax

16 ret

17 .L3:

18 movl $0, %r10d

19 movl $0, %r11d

20 call __morestack

21 ret

22 jmp .L2

23
24 .LFE0:

25
26
27
28 ...

focus on lines having instructins

instructions for a function start
with a label similar to the
function name, but it may not be
exactly the same (name mangling)

15 / 22

Registers

general-purpose 64 bit integer registers: r{a,b,c,d}x, rdi,
rsi, r[8-15], rbp

general-purpose floating point number registers: xmm[0-15]

stack pointer register: rsp

a compare flag register: eflags, not directly used by
instructions

▶ implicitly set by compare instructions
▶ implicitly used by conditional jump instructions

an instruction pointer register: rip, not directly used by
instructions

▶ set by every instruction

https://wiki.cdot.senecapolytechnic.ca/wiki/X86_64_

Register_and_Instruction_Quick_Start

16 / 22

https://wiki.cdot.senecapolytechnic.ca/wiki/X86_64_Register_and_Instruction_Quick_Start
https://wiki.cdot.senecapolytechnic.ca/wiki/X86_64_Register_and_Instruction_Quick_Start

Frequently used instructions

learn details and other instructions from the exercise

addq (+), leaq (+), subq (−), imulq (×), idivq (/)

movq : move values between registers or between register and
memory (load/store)

cmpq : compare two values and set the result into the eflags

register

jl (<), jle (≤), jg (>), jge (≥), je (=), jne (̸=) : jump if
a condition (indicated by eflags) is met

call, ret : call or return from a function

17 / 22

How to read instructions and operands (of GNU

assembler)

e.g., addq instructios takes two operands�
1 addq x,y

and its effect is�
1 y += x

many two operand instructions behave similarly�
1 opq x,y ≡ y = y op x

especially confusing is subq�
1 subq x,y ≡ y = y - x

18 / 22

Syntax of operands

$n : immediate value of n

%R : register named R

(...) : address operand (details in the next slide)

where

n : a constant (4, 8, etc.)

R : regiser name (rax, rbx, rdi, etc.)

ex.

addq $1,%rax : add 1 to %rax register

subq $1,%rax : subtract 1 from %rax register

19 / 22

Address operands

an address operand (...) specifies an address, and can be
▶ (%R) : R
▶ n(%R) : R+ n
▶ n(%R,s,R′) : R+ sR′ + n

where
▶ n, s : integer constants
▶ R,R′ : register names

ex.
▶ mulq (%rdi),%rax : reads address specified by %rdi and

multiply %rax by it
▶ movq %rax,8(%rdi) : writes the value of %rax to the

address specified by %rdi+8
▶ leaq 16(%rdi,8,%rsi),%rax : %rax = %rdi + 8 * %rsi +

16; this instruction looks like reading/writing memory, but it
is actually just a peculiar arithmetic (common in address
calculation but also used for integer addition)

20 / 22

Julia assembly syntax

syntax and operand order actually differ between assemblers

they are of course identical in the binary level

in particular, output from Julia (code native) is different
▶ destination-first syntax

addq x, y ≡ x += y

▶ address operands are more intuitive. ex.

GNU Julia

mulq (%rdi),%rax mulq %rax,[%rdi]

movq %rax,8(%rdi) movq [%rdi+8],%rax

leaq 16(%rdi,8,%rsi),%rax leaq %rax,[%rdi+8*%rsi+16]

21 / 22

Things to learn in the exercise

1 calling convention or ABI : function’s incoming
parameters and the return value are put in places (typically
registers) predetermined by convention

2 data representation : once you know where incoming
parameters and return values are, understand how data
(integers, floating point numbers, structs, pointers to
something, arrays, etc.) are represented, by compiling simple
functions that work on them. e.g.,�

1 f(a, i) = a[i]

3 control flow : how various control flows (conditionals and
loops) are implemented

4 function calls : how function calls are implemented

22 / 22

	Introduction
	CPU and machine code : An overview
	A glance at x86 machine (assembly) code

