
Programming Lanaugages (2)

Essence of Object-Oriented Programming

Kenjiro Taura

1 / 17

Classes and objects

▶ a class ≈ a data type definition + functions (methods)
for it

▶ an object is a data instance created from a class
definition�

1 # define a class named rect

2 class rect:

3 def __init__(self, x, y, width, height):

4 self.x = x

5 self.y = y

6 self.width = width

7 self.height = height

8

9 r = rect(10,20,30,40) # create an instance (or an object) of rect

2 / 17

Methods

▶ ≈ functions
▶ unlike ordinary functions, a method of the same name

can be defined for multiple classes (i.e., implemented
differently)�

1 class rect:

2 ...

3 # define a method named area

4 def area(self):

5 return self.width * self.height

6

7 class ellipse:

8 ...

9 # define another method named area

10 def area(self):

11 return self.rx * self.ry * math.pi

12

3 / 17

Dynamic dispatch

▶ when you call a method, which method gets called
among many implementations is determined by the
class argument(s) belong to�

1 # shapes may have both rect and ellipse instances

2 for s in shapes:

3 ... s.area() ...

4 / 17

Language design points

�
1 # shapes may have both rect and ellipse instances

2 for s in shapes:

3 ... s.area() ...

▶ in a code like the above, a variable s may take a value
of different classes (types) over time (polymorphism)

▶ for languages that require type declarations, how to
declare/specify the type of s or shapes?

▶ does Go/Julia/OCaml/Rust require type declarations?

5 / 17

Language design points

�
1 # shapes may have both rect and ellipse instances

2 for s in shapes:

3 ... s.area() ...

▶ more fundamentally, how can we guarantee, prior to
execution, that type errors (≈ application of
non-existing methods) do not happen at runtime?

▶ such property is called type safety

▶ an algorithm that checks type safety prior to execution
is often called static type checking

▶ does Go/Julia/OCaml/Rust guarantee type safety?

6 / 17

Different approaches I

1. forgo static type checking and thus type safety (e.g.,
Python, javascript, Lisp, Smalltalk, . . .)�

1 shapes = [rect(...), ellipse(...), ...]

2 for s in shapes:

3 ... s.area() ...

2. disallow polymorphism altogether and make it
(trivially) type-safe (e.g., Pascal)�

1 rects : array of rect = [rect(...), rect(...)]

2 for s : rect in rects:

3 ... s.area() ...

7 / 17

Different approaches II

3. do some (loose) static type checking without
guaranteeing type safety; allow polymorphism via
unsafe casts between pointers (e.g., C)�

1 void * shapes[] = { (void *)rect(...), (void *)ellipse(...) };

2 for s in shapes:

3 ... area(s) ...

4. allow polymorphism yet guarantee type safety via
subtypes
▶ C is a subtype of P (C ≤ P) ≡ a value of C can be

safely used wherever P is expected
▶ allow P ← C (put a value of type C in a variable of

type P)

8 / 17

Different approaches to subtyping

▶ class vs. interface
▶ subtype relations hold between two classes
▶ subtype relations hold between an interface (or trait,

abstract class, etc.) and a class that implements or
conforms to it; or between two interfaces

rect ellipse

shape ... has .area() method
that returns a float

class

class class

... reuse or redefine

.area() method
rect ellipse

shape ... must have .area() method
that returns a float

interface

class class

defines .area() method

▶ nominal (explicit) vs. structural subtyping
▶ nominal : subtype relation exists only when so

declared or a class is explicitly derived from the other
▶ structural : subtype relation exists whenever safe

(based on the structure)
9 / 17

How/if they guarantee type safety?

▶ following slides briefly explain how Go/Rust/OCaml
guarantee type safety

▶ type safety ≡ “no such methods” error never happens
at runtime ≡ when a program containing o.m(. . .)
passes static type check, o always has method m at
runtime

▶ recall that this is not the case for some languages
(including Python, Julia, C++, etc.)

10 / 17

A common framework

▶ a type checker, before execution, computes (or assumes
given by the programmer) the static type of each
expression/variable

▶ for any assignment-like operations o = p, it gets static
types of o (= S) and p (= T)

▶ the assignment is valid ⇐⇒ T ≤ S

11 / 17

Note: assignment-like operations

▶ ≈ any operation in which the same value changes its
static type
▶ assignment to a variable/structure/array element
▶ function calls (passing values to parameters)
▶ function return (returning a value)

12 / 17

Subtype relationship

▶ T is a subtype of S (T ≤ S)

▶ ≈ any value of T can be safely put anywhere S is
expected

▶ ≈
1. T has all methods S has
2. for each method, the input type of the T ’s version is a

supertype of S’s
3. for each method, the return type of the T ’s version is

a subtype of S’s

▶ note: P is a supertype of Q ⇐⇒ Q ≤ P (i.e., Q is a
subtype of P)

13 / 17

Specifically, . . .

▶ imagine the type checker checks expression:

s.m(p)

where
▶ s’s static type is S
▶ S.m’s input static type is P
▶ S.m’s return static type is A

▶ and imagine s is assigned a value t (s = t) elsewhere,
whose static type is T

▶ then
▶ T must have m (obvious)
▶ T.m’s input static type must be supertype of P
▶ T.m’s return static type must be subtype of A

14 / 17

Go

▶ details on Assignability section of Go reference

▶ Q: when is a type T a subtype of another type S
(T ≤ S)?

▶ A: one of the following

1. S and T are identical type
2. S is an interface and T is a struct/interface that

implements S or a pointer to it

▶ Q: so when is T said to implement an interface S?

▶ A:
▶ T has all the methods specified in S, and
▶ each method in T has the same type as the method of

the same name in S

15 / 17

https://go.dev/ref/spec#Assignability

Go

▶ details on Assignability section of Go reference

▶ Q: when is a type T a subtype of another type S
(T ≤ S)?

▶ A: one of the following

1. S and T are identical type
2. S is an interface and T is a struct/interface that

implements S or a pointer to it

▶ Q: so when is T said to implement an interface S?

▶ A:
▶ T has all the methods specified in S, and
▶ each method in T has the same type as the method of

the same name in S

15 / 17

https://go.dev/ref/spec#Assignability

Go

▶ details on Assignability section of Go reference

▶ Q: when is a type T a subtype of another type S
(T ≤ S)?

▶ A: one of the following

1. S and T are identical type
2. S is an interface and T is a struct/interface that

implements S or a pointer to it

▶ Q: so when is T said to implement an interface S?

▶ A:
▶ T has all the methods specified in S, and
▶ each method in T has the same type as the method of

the same name in S

15 / 17

https://go.dev/ref/spec#Assignability

Go

▶ details on Assignability section of Go reference

▶ Q: when is a type T a subtype of another type S
(T ≤ S)?

▶ A: one of the following

1. S and T are identical type
2. S is an interface and T is a struct/interface that

implements S or a pointer to it

▶ Q: so when is T said to implement an interface S?

▶ A:
▶ T has all the methods specified in S, and
▶ each method in T has the same type as the method of

the same name in S

15 / 17

https://go.dev/ref/spec#Assignability

Rust

▶ Q: when is a type T a subtype of another type S
(T ≤ S)?

▶ A: one of the following

1. S and T are identical type
2. S is a reference to a trait and T is a reference to a

struct that implements S

▶ Q: so when does T implement a trait S?

▶ A:
▶ T has all the methods specified in S, and
▶ each method in T has the same type as the method of

the same name in S

16 / 17

Rust

▶ Q: when is a type T a subtype of another type S
(T ≤ S)?

▶ A: one of the following

1. S and T are identical type
2. S is a reference to a trait and T is a reference to a

struct that implements S

▶ Q: so when does T implement a trait S?

▶ A:
▶ T has all the methods specified in S, and
▶ each method in T has the same type as the method of

the same name in S

16 / 17

Rust

▶ Q: when is a type T a subtype of another type S
(T ≤ S)?

▶ A: one of the following

1. S and T are identical type
2. S is a reference to a trait and T is a reference to a

struct that implements S

▶ Q: so when does T implement a trait S?

▶ A:
▶ T has all the methods specified in S, and
▶ each method in T has the same type as the method of

the same name in S

16 / 17

Rust

▶ Q: when is a type T a subtype of another type S
(T ≤ S)?

▶ A: one of the following

1. S and T are identical type
2. S is a reference to a trait and T is a reference to a

struct that implements S

▶ Q: so when does T implement a trait S?

▶ A:
▶ T has all the methods specified in S, and
▶ each method in T has the same type as the method of

the same name in S

16 / 17

OCaml

▶ Q: when is a type T a subtype of another type S
(T ≤ S)?

▶ A: one of the following, among others

1. S and T are identical type
2. when each of S and T is a function type (S = a→ b

and T = a′ → b′), then b′ ≤ b and a ≤ a′

3. when each of S and T is an object type
(S = <m0 : t0, . . . >, T = <m′

0 : t
′
0, . . . >), then

▶ {m0, . . .} ⊂ {m′
0, . . .} and

▶ for each mi = m′
j , t

′
j ≤ ti

17 / 17

OCaml

▶ Q: when is a type T a subtype of another type S
(T ≤ S)?

▶ A: one of the following, among others

1. S and T are identical type

2. when each of S and T is a function type (S = a→ b
and T = a′ → b′), then b′ ≤ b and a ≤ a′

3. when each of S and T is an object type
(S = <m0 : t0, . . . >, T = <m′

0 : t
′
0, . . . >), then

▶ {m0, . . .} ⊂ {m′
0, . . .} and

▶ for each mi = m′
j , t

′
j ≤ ti

17 / 17

OCaml

▶ Q: when is a type T a subtype of another type S
(T ≤ S)?

▶ A: one of the following, among others

1. S and T are identical type
2. when each of S and T is a function type (S = a→ b

and T = a′ → b′), then b′ ≤ b and a ≤ a′

3. when each of S and T is an object type
(S = <m0 : t0, . . . >, T = <m′

0 : t
′
0, . . . >), then

▶ {m0, . . .} ⊂ {m′
0, . . .} and

▶ for each mi = m′
j , t

′
j ≤ ti

17 / 17

OCaml

▶ Q: when is a type T a subtype of another type S
(T ≤ S)?

▶ A: one of the following, among others

1. S and T are identical type
2. when each of S and T is a function type (S = a→ b

and T = a′ → b′), then b′ ≤ b and a ≤ a′

3. when each of S and T is an object type
(S = <m0 : t0, . . . >, T = <m′

0 : t
′
0, . . . >), then

▶ {m0, . . .} ⊂ {m′
0, . . .} and

▶ for each mi = m′
j , t

′
j ≤ ti

17 / 17

