
Programming Lanaugages (1)

Functional Programming

Kenjiro Taura

1 / 17

What is functional programming? 1st attempt

▶ Wikipedia:
. . . functional programming is a programming
paradigm where programs are constructed by apply-
ing and composing functions.

▶ . . . , well, I am almost always writing and applying
functions, . . .

2 / 17

What is functional programming? 2nd attempt

▶ ask ChatGPT: describe the most important aspect of
functional programming in less than 100 words.

Functional programming’s essence lies in treat-
ing computation as the evaluation of mathematical
functions. It emphasizes immutability, pure func-
tions, and higher-order functions, enabling clearer,
more concise, and maintainable code. By avoiding
mutable state and side effects, it enhances modu-
larity and facilitates reasoning about program be-
havior.

▶ is it about “avoiding side effects”, or more generally
avoiding certain tools that you have been taught and
are now familiar with?

▶ if so, why you care?
3 / 17

What is functional programming? My take

▶ it is a “way of thinking” when you solve a problem

▶ it formulates the solution to the problem using
recursion

▶ let’s dig into it using an example

4 / 17

An example

▶ Q: write a function that computes the sum of elements
in an array

▶ A: a “procedural” Python program�
1 def sum_array(a):

2 n = len(a)

3 s = 0

4 for i in range(n):

5 s = s + a[i]

6 return s

5 / 17

Thinking behind the procedural version

▶ well, to compute a[0] + a[1] + ...+ a[n-1],

▶ start with s = 0, and

▶ s = s + a[0]

▶ s = s + a[1]

▶ . . .

▶ s = s + a[n-1]

▶ now s should hold what we want

remember how you overcame the following confusing
“equation”?�

1 s = s + a[i] # do you mean 0 = a[i] ??

6 / 17

A “functional” version

�
1 # a[i] + a[i+1] + ... + a[j-1]

2 def sum_range(a, i, j):

3 if i == j:

4 return 0

5 else:

6 return a[i] + sum_range(a, i + 1, j)

7

8 def sum_array(a):

9 return sum_range(a, 0, len(a))

7 / 17

A (superficial) characteristics of the “functional”

version

▶ no updates to variables (like s = s + ...)

▶ no loops

but the point is not about avoiding them

8 / 17

The thinking behind the functional version

▶ the observation

sum of a[0:n] = a[0]+ sum of a[1:n]

▶ . . . and you can compute “sum of a[1:n]” (almost) by
a recursive call

▶ to be precise, you define a function to compute sum of
an array range a[i:j] by

sum of a[i:j] = a[i]+ sum of a[i+1:j]

▶ one more thing is the base case (when i = j, sum is
zero)

9 / 17

Note : a few more alternatives

▶
sum of a[i:j] = sum of a[i:j-1]+ a[j-1]

▶
sum of a[i:j] = sum of a[i:c]+ a[c:j]

where c = ⌊(i+ j)/2⌋, or any value that satisfies
i < c < j, for that matter�

1 def sum_range(a, i, j):

2 if i == j:

3 return 0

4 elif i + 1 == j:

5 return a[i]

6 else:

7 c = (i + j) // 2

8 return sum_range(a, i, c) + sum_range(a, c, j)

10 / 17

The “functional way” of problem solving

▶ ≈ solving a problem by recursive calls

▶ ≈ solving a problem by assuming solutions to
“smaller” cases are known

this is very powerful because of the same reason why
solving math problems using recurrence relation (漸化式) is
very powerful

11 / 17

Solving problems with recurrence relation : an

example

▶ Q: Draw n lines in a plane, in such a way that no three
lines intersect at a point. How many regions do they
divide the plane into?

▶ A: Let the number of regions an. Then,

12 / 17

Solving problems with recurrence relation : an

example

▶ Q: Draw n lines in a plane, in such a way that no three
lines intersect at a point. How many regions do they
divide the plane into?

▶ A: Let the number of regions an. Then,

a0 = 1,

12 / 17

Solving problems with recurrence relation : an

example

▶ Q: Draw n lines in a plane, in such a way that no three
lines intersect at a point. How many regions do they
divide the plane into?

▶ A: Let the number of regions an. Then,

{
a0 = 1,
an = an−1 + n

+1
+1

+1
+1

12 / 17

The functional thinking

1. say you are asked to find an answer to a problem (e.g.,
f(n) or g(a))

2. try to answer it, assuming the answer to “smaller
cases” are known

3. express it using recursions

▶ what “smaller” exactly means depends on the problem
▶ smaller integers (e.g., n− 1, n/2, etc.)
▶ smaller arrays (e.g., a[0 : n− 1], a[1 : n], a[0 : n/2],

numbers in a less than x, etc.)
▶ a child of a tree node
▶ etc.

13 / 17

The divide-and-conquer paradigm

▶ a similarly powerful paradigm is the
“divide-and-conquer” problem solving

▶ given an input X

▶ somehow “divide” X into smaller instances X0, X1, · · ·
▶ solve each of them using a recursion

▶ somehow “merge” them into the solution to X

14 / 17

One more example

▶ Q: define a function that, given a and n, computes an

▶ note: Python has a builtin primitive (a ** n) or pow
that just does that, but here we define it without them

▶ A: the “procedural” version�
1 def pow(a, n):

2 p = 1

3 for i in range(n):

4 p = p * a

5 return p

▶ this expresses how you compute an, step by step

15 / 17

A functional version

▶ instead ask “what is” an

▶ well,
▶ base case: n = 0 ⇒ 1
▶ otherwise, an = a ∗ an−1�
1 def pow(a, n):

2 if n == 0:

3 return 1

4 else:

5 return a * pow(a, n - 1)

16 / 17

A smarter version

�
1 def pow(a, n):

2 if n == 0:

3 return 1

4 elif n % 2 == 0:

5 p = pow(a, n // 2)

6 return p * p

7 else:

8 return a * pow(a, n - 1)

17 / 17

