
Rust Memory Management

Kenjiro Taura

2025/07/07

Contents

Contents
Introduction . 2
Rust Basics . 6
Owning Pointers . 10
Box<𝑇 > type . 15
Borrowing pointers (&𝑇) . 26
Borrow-checking details . 30
Summary . 50

1 / 55

Introduction

Rust’s basic idea to memory management

• Rust maintains that, for any live object,
1. there is one and only one pointer that “owns” it (the owning pointer)
2. there are any number of non-owning pointers to it (borrowing pointers)
3. borrowing pointers cannot be dereferenced after the owning pointer

goes away
• ⇒ it can safely reclaim the data when the owning pointer goes away

“single-ownership rule”

own
borrow

borrow

{

let a = S{x: …, y: …};

…

} // what a points to will be gone here

3 / 55

The rules are enforced statically

• Rust enforces the rules (or, detect violations thereof)
‣ statically, not dynamically
‣ compile-time, not at runtime
‣ before execution, not during execution

“borrow checker”

4 / 55

Escaping from the single ownership model

• there are actually some ways to get around the rules

1. reference counting pointers (≈ multiple owning pointers)
• counts the number of owners at runtime, and reclaim the data when all

these pointers are gone
2. unsafe/raw pointers (≈ totally up to you)

they are not specific to Rust, and we’ll not cover them below

5 / 55

Rust Basics

Pointer-like data types in Rust

given a type 𝑇 (i32, struct, enum, …), below are types representing
“references (pointers) to 𝑇 ”

1. 𝑇 : owning pointer to 𝑇
2. Box<𝑇 > (pronounced “box 𝑇 ”) : owning pointer to 𝑇
3. &𝑇 (pronounced “ref 𝑇 ”) : borrowing pointer to 𝑇
4. Rc<𝑇 > and Arc<𝑇 > : shared (reference-counting) owning pointer to 𝑇
5. *𝑇 : unsafe pointer to 𝑇

following discussions are focused on
𝑇 , Box<𝑇 > and &𝑇 T or Box<T>

&T

&T

7 / 55

Pointer-making expressions

given an expression 𝑒 of type 𝑇 , below are expressions that make pointers to
the value of 𝑒 (besides 𝑒 itself)

• Box::new(𝑒) (of type Box<𝑇 >) : an owning pointer
• &𝑒 (of type &𝑇) : a borrowing pointer

8 / 55

An example

{

let a: S = S{x: …}; // allocate memory for S
// and make an owning pointer to it

let b: S = a // an owning pointer
let c: Box<S> = Box::<S>::new(a) // an owning pointer
let d: &S = &a // a borrowing pointer

}

• note: type of variables can be omitted (spelled out for clarity)
• note: the above program violates several rules so it does not compile

9 / 55

Owning Pointers

Assignments of owning pointers

• to maintain the “single-owner” rule, an assignment of owning pointers in
Rust does not copy, but moves it out of the righthand side, disallowing
further use of it

b = a; // a cannot be used below

fn foo() {

let a = S{x: …, y: …};

… a.x …; // OK, as expected
… a.y …; // OK, as expected

}

a

11 / 55

Assignments of owning pointers

• to maintain the “single-owner” rule, an assignment of owning pointers in
Rust does not copy, but moves it out of the righthand side, disallowing
further use of it

b = a; // a cannot be used below

fn foo() {

let a = S{x: …, y: …};

… a.x …; // OK, as expected
… a.y …; // OK, as expected
// the reference moves out from a
let b = a;

a.x; // NG, the value has moved out
b.x; // OK

}

a

b

11 / 55

Argument-passing also moves the reference

• passing a value to a function also moves the reference out of the source

fn foo() {

let a = S{x: …, y: …};

… a.x …; // OK, as expected
… a.y …; // OK, as expected

}

afoo

12 / 55

Argument-passing also moves the reference

• passing a value to a function also moves the reference out of the source

fn foo() {

let a = S{x: …, y: …};

… a.x …; // OK, as expected
… a.y …; // OK, as expected
// moves the reference out of a
f(a);

a.x; // NG, the reference has moved
}

afoo
xf(x)

12 / 55

Exceptions to “assignment moves the reference”

• you may notice the moving assignment contradicts what you have seen

b = a; // a cannot be used after this

• if it applies everywhere, does the following program violate it?

fn foo() -> f64 {

let a = 123.456;

let b = a; // does the reference to 123.456 move out from a!?
a + 0.789 // if so, is this invalid!?

}

• answer: no, it does not apply to primitive types like i32, f64, etc.
• more generally, it does not apply to data types that implement Copy trait

13 / 55

Copy trait

• define your struct with #[derive(Copy, Clone)] like

#[derive(Copy, Clone)]

struct S { … }

• ⇒ assignment or argument-passing of S copies the righthand side

fn foo() {

let a = S{x: …, y: …};

a.x; // OK, as expected
a.y; // OK, as expected

}

a

• note: copy types trivially maintain the
single-owner rule

14 / 55

Copy trait

• define your struct with #[derive(Copy, Clone)] like

#[derive(Copy, Clone)]

struct S { … }

• ⇒ assignment or argument-passing of S copies the righthand side

fn foo() {

let a = S{x: …, y: …};

a.x; // OK, as expected
a.y; // OK, as expected
// the value is copied
let b = a;

a.x; // OK
b.x; // OK, too

}

a

b

• note: copy types trivially maintain the
single-owner rule

14 / 55

Box<𝑇 > type

Box<𝑇 > makes an owning pointer

• making a pointer by Box::new(𝑣) moves the reference out of 𝑣, too, and
Box::new(𝑣) becomes the owning pointer

fn foo() {

let a = S{x: …, y: …};

a.x; // OK, as expected
a.y; // OK, as expected

}

a

16 / 55

Box<𝑇 > makes an owning pointer

• making a pointer by Box::new(𝑣) moves the reference out of 𝑣, too, and
Box::new(𝑣) becomes the owning pointer

fn foo() {

let a = S{x: …, y: …};

a.x; // OK, as expected
a.y; // OK, as expected
// OK, now b is the owning pointer
let b = Box::new(a)

a.x; // NG, the value has moved out
(*b).x; // OK
b.x; // OK. abbreviation of (*b).x

}

a

b

16 / 55

Difference between 𝑇 and Box<𝑇 >?

• as you have seen, the effects of

let b = a

and

let b = Box::new(a)

look very similar (identical)

• as far as data lifetime is concerned, it is in fact safe to say they are
• Rust has distinction between them for

1. specifying data layout
2. allowing dynamic dispatch only for Box<𝑇 >
3. specifying where data are allocated (stack vs. heap)

17 / 55

Data layout differences between 𝑇 and Box<𝑇 >

• S and U below have different data layouts
‣ struct S { …, p: 𝑇, } “embeds” a 𝑇 into S
‣ struct U { …, p: Box<𝑇>, } has p point to a separately allocated 𝑇

S

Tp:

U

T

Box<T>p:

18 / 55

Data layout differences between 𝑇 and Box<𝑇 >

• in particular, Box<𝑇 > is essential to define recursive data structures
‣ struct S { …, p: S, } is not allowed, whereas
‣ struct U { …, p: Box<U>, } is

• note: U above can never be constructed; a recursive data structure typically
uses enum or Option<Box<..>>
‣ struct U { …, p: Option<Box<U>>, }

19 / 55

Data layout differences between 𝑇 and Box<𝑇 >

• the distinction is insignificant when discussing lifetimes

S

Tp:

U

T

Box<T>p:

• in both cases, data of 𝑇 (yellow box) is gone exactly when the enclosing
structure is gone

• another difference is that Rust allocates 𝑇 on stack and move it to heap
when Box<𝑇 > is made
‣ but again, it has nothing to do with lifetime (unlike C/C++)

20 / 55

Owning pointers and control flows

• Rust compiler determines, for each variable of owning pointer type (𝑇 or
Box<𝑇 >), at which point the variable can be used (i.e., the value has not
been moved out)

• it may be a conservative estimate

fn foo() {

let a = S{x: …, y: …};

if … {

let b = a;

}

… a.x … // NG
}

fn foo() {

let a = S{x: …, y: …};

for … {

let b = a; // NG
}

}

21 / 55

A (huge) implication of the single-owner rule

• with only owning pointers (𝑇 and Box<𝑇 >),
‣ you can make a tree of data,
‣ but you cannot make a general graph with joins

or cycles, where a node may be pointed to by
multiple nodes

• to make a graph whose nodes are 𝑇 , use either
‣ &𝑇 to represent edges, or
‣ Vec<𝑇 > to represent nodes and Vec<(i32,
i32)> to represent edges

22 / 55

The (huge) implication to memory management

• with only owning pointers (i.e., no borrowing
pointers)

• whenever an owning pointer is gone (e.g.,
‣ a variable goes out of scope or
‣ a variable or field is overwritten),

the entire tree rooted from the pointer can be
safely reclaimed

{

let t = make_tree(…);

…

} … // t deallocated here

23 / 55

The (huge) implication to memory management

• Rust exactly does that, with the additional guarantee that borrowing
pointers are never dereferenced after its owning pointer is gone

24 / 55

Motto:

lifetime of data = lifetime of its owning pointer

= program points its owning pointer can be dereferenced (†)

≈ the block its owning pointer variable is defined

{

let s = S{ … }; // or Box::new(S{...})
…

…

} … // referent of s reclaimed here

• (†) : determined by control flows and assignments, to be precise

25 / 55

Borrowing pointers (&𝑇)

Basics

• you can derive any number of borrowing pointers (&𝑇) from 𝑇 or Box<𝑇 >
• the owning pointer remains valid after a borrowing pointer has been made

let a = S{x: .., y: ..};

let b = &a;

… a.x + b.x … // OK

• the issue is how to prevent a program from dereferencing borrowing
pointers after its owning pointer is gone

27 / 55

Borrowers rule in action

• a borrowing pointer cannot be dereferenced after its owning pointer is gone

fn foo() -> i32 {

let c: &S; // a reference to S

}

c : &S

28 / 55

Borrowers rule in action

• a borrowing pointer cannot be dereferenced after its owning pointer is gone

fn foo() -> i32 {

let c: &S; // a reference to S
{ // an inner block
let b: &S; // another reference

}

}

b : &S
c : &S

28 / 55

Borrowers rule in action

• a borrowing pointer cannot be dereferenced after its owning pointer is gone

fn foo() -> i32 {

let c: &S; // a reference to S
{ // an inner block
let b: &S; // another reference
let a = S{x: …}; // allocate S

}

}

b : &S
c : &S

a : S

28 / 55

Borrowers rule in action

• a borrowing pointer cannot be dereferenced after its owning pointer is gone

fn foo() -> i32 {

let c: &S; // a reference to S
{ // an inner block
let b: &S; // another reference
let a = S{x: …}; // allocate S
// OK (both a and b live only until the end of

the inner block)
b = &a;

}

}

b : &S
c : &S

a : S

28 / 55

Borrowers rule in action

• a borrowing pointer cannot be dereferenced after its owning pointer is gone

fn foo() -> i32 {

let c: &S; // a reference to S
{ // an inner block
let b: &S; // another reference
let a = S{x: …}; // allocate S
// OK (both a and b live only until the end of

the inner block)
b = &a;

c = b; // dangerous (c outlives a)
}

}

b : &S
c : &S

a : S

28 / 55

Borrowers rule in action

• a borrowing pointer cannot be dereferenced after its owning pointer is gone

fn foo() -> i32 {

let c: &S; // a reference to S
{ // an inner block
let b: &S; // another reference
let a = S{x: …}; // allocate S
// OK (both a and b live only until the end of

the inner block)
b = &a;

c = b; // dangerous (c outlives a)
} // a dies here, making c a dangling pointer
c.x // NG (deref a dangling pointer)

}

b : &S
c : &S

a : S

!

28 / 55

A mutable borrowing reference (&mut 𝑇)

• data cannot be modified through ordinary borrowing references &𝑇

let a : S = S{x: 10, y: 20};

let b : &S = &a;

b.x = 100; // NG

• i.e., &𝑇 is the type of immutable references
• you can modify data only through a mutable reference (&mut 𝑇)

let mut a : S = S{x: 10, y: 20};

let b : &mut S = &mut a;

b.x = 100; // OK

• the difference is largely orthogonal to memory management

29 / 55

Borrow-checking details

A technical remark about the borrow-checking

• it’s not dangling pointers, per se, that are prevented, but their dereferencing

• the previous code compiles as long as c is not dereferenced

fn foo() -> i32 {

let c: &S; // a reference to S
{ // an inner block
let b: &S; // another reference
let a = S{x: …}; // allocate S
// OK (both a and b live only until the end of the inner block)
b = &a;

c = b; // dangerous (c outlives a)
} // a dies here, making c a dangling pointer
// c.x don’t deref c

}

31 / 55

How borrow-checking works : lifetime

• lifetime of data
‣ = program points where the data has not been deallocated
‣ = program points where the data’s owning pointer is valid

• for each borrowing pointer, Rust compiler determines the lifetime of data it
points to (referent lifetime) as its static type

• upon assignment 𝑝 = 𝑞 between borrowing pointers, it demands

referent lifetime of 𝑝 ⊂ referent lifetime of 𝑞

32 / 55

How borrow-checking basically works

fn foo() -> i32 {

let c: &S;

{

let b: &S;

let a = S{x: …}; // lives until 𝛼

}

}

1. the owning pointer a’s lifetime is
the inner block; call it 𝛼 (…)

2. let 𝛽 and 𝛾 be referent lifetimes of
b and c, respectively

33 / 55

How borrow-checking basically works

fn foo() -> i32 {

let c: &S;

{

let b: &S;

let a = S{x: …}; // lives until 𝛼
b = &a; // b’s referent lifetime ⊂ a’s = 𝛼
c = b; // c’s referent lifetime ⊂ b’s = 𝛼 … 𝛼

}

}

1. the owning pointer a’s lifetime is
the inner block; call it 𝛼 (…)

2. let 𝛽 and 𝛾 be referent lifetimes of
b and c, respectively

3. due to the assignments,
• b = &a ⇒ 𝛽 ⊂ 𝛼
• c = b ⇒ 𝛾 ⊂ 𝛽 (⊂ 𝛼)

33 / 55

How borrow-checking basically works

fn foo() -> i32 {

let c: &S;

{

let b: &S;

let a = S{x: …}; // lives until 𝛼
b = &a; // b’s referent lifetime ⊂ a’s = 𝛼
c = b; // c’s referent lifetime ⊂ b’s = 𝛼 … 𝛼

}

c.x // NG (deref outside c’s referent lifetime = 𝛼)
}

1. the owning pointer a’s lifetime is
the inner block; call it 𝛼 (…)

2. let 𝛽 and 𝛾 be referent lifetimes of
b and c, respectively

3. due to the assignments,
• b = &a ⇒ 𝛽 ⊂ 𝛼
• c = b ⇒ 𝛾 ⊂ 𝛽 (⊂ 𝛼)

4. dereference c.x must be ⊂ 𝛾 (⊂
𝛼), which is not the case (i.e.,
invalid)

33 / 55

Programming with borrowing references

• in more general cases, programs using borrowing references must help
compilers track their referent lifetimes

• this must be done for functions called from unknown places, function calls
to unknown functions and data structures

• to this end, the programmer sometimes must annotate reference types with
their referent lifetimes

34 / 55

References in function calls

• how to check the validity of a functions call without knowing its body?

{

let r : &i32;

let a = 123;

{

let b = 456;

{

let c = 789;

r = foo(&a, &b, &c); … 𝛾
} … 𝛽

}

*r // (†) … 𝛼
}

‣ *r should be safe if f(p, q,
r) returns a reference whose
referent lifetime contains (†);
i.e., p

35 / 55

References in data structures

• how to check the validity of dereferencing references obtained from a data
structure

struct A { b : &B }

struct B { c : &C }

struct C { x : i32 }

…

let c = C{x : 123};

let b = B{c : &c};

let mut a = A{b : &b};

a.b.c.x // OK?

36 / 55

References in data structures

• how to check the validity of dereferencing references obtained from a data
structure

struct A { b : &B }

struct B { c : &C }

struct C { x : i32 }

…

let c = C{x : 123};

let b = B{c : &c};

let mut a = A{b : &b};

{

let b2 = B{c : &c};

a.b = &b2;

}

a.b.c.x // OK?

36 / 55

References in function parameters

• how to check the validity of functions taking references or structures
containing references, without knowing all its callers

fn bar(a : &mut &i32, b : &i32) {

*a = b;

}

• what if references are in structures …

fn baz(a : &mut A, b: &B) {

a.b = b

}

37 / 55

Reference type with a lifetime parameter

• to address these problems, Rust’s borrowing reference types (&𝑇 or &mut
𝑇) carry lifetime parameter representing their referent lifetimes

T

lives until 'a

38 / 55

Reference type with a lifetime parameter

• to address these problems, Rust’s borrowing reference types (&𝑇 or &mut
𝑇) carry lifetime parameter representing their referent lifetimes

• syntax:
‣ &'𝑎 𝑇 : reference to “𝑇 whose lifetime is '𝑎”
‣ &'𝑎 mut 𝑇 : ditto; except you can modify data through it

&'a T T

lives until 'a

38 / 55

Reference type with a lifetime parameter

• to address these problems, Rust’s borrowing reference types (&𝑇 or &mut
𝑇) carry lifetime parameter representing their referent lifetimes

• syntax:
‣ &'𝑎 𝑇 : reference to “𝑇 whose lifetime is '𝑎”
‣ &'𝑎 mut 𝑇 : ditto; except you can modify data through it

• every reference carries a lifetime parameter,
though there are places you can omit them

• roughly, you must write them explicitly in
function parameters, return types, and struct/enum
fields; and can omit them for local variables

&'a T T

lives until 'a

38 / 55

Attaching lifetime parameters

• rule: reference types that appear in function parameters, return types, and
struct/enum fields must have explicit lifetime paramters

39 / 55

Attaching lifetime parameters to functions

• therefore the following does not compile:

fn foo(ra: &i32, rb: &i32, rc: &i32) -> &i32 {

ra

}

with errors like:
|
| fn foo(ra: &i32, rb: &i32, rc: &i32) -> &i32 {
| ---- ---- ---- ^ expected named lifetime parameter
|
= help: this function's return type contains a borrowed value, but the signature does not say
whether it is borrowed from `ra`, `rb`, or `rc`
help: consider introducing a named lifetime parameter
|
| fn foo<'a>(ra: &'a i32, rb: &'a i32, rc: &'a i32) -> &'a i32 {
| ++++ ++ ++ ++ ++

40 / 55

Why do we need an annotation, fundamentally?

• without any annotation, how to know whether this is safe, without knowing
the body of foo?

{

let r : &i32;

let a = 123;

{

let b = 456;

{

let c = 789;

r = foo(&a, &b, &c);

}

}

*r

}

• essentially, the compiler complains “tell me
what kind of referent lifetime the reference
returned by foo(&a, &b, &c) has”

• it must be inferred without knowing the body of
foo, only from its type

41 / 55

Attaching lifetime parameters

• functions

fn f<'a,'b,'c,...> (𝑝0 : 𝑇0, 𝑝1 : 𝑇1, …) -> 𝑇𝑟 { … }

• structs/enums

struct A<'a,'b,'c,...> {
𝑓0 : 𝑇0,
𝑓1 : 𝑇1,
…

}

• 𝑇0, 𝑇1,…, and 𝑇𝑟 may use 'a, 'b, 'c, … as lifetime parameters (e.g., &'a
i32)

42 / 55

One way to attach lifetime parameters to the example

fn foo<'a>(ra: &'a i32, rb: &'a i32, rc: &'a i32) -> &'a i32

• effect: the return value is assumed to point to
the shortest of the three

• why? generally, when Rust compiler finds
foo(x, y, z), it tries to determine 'a so that
'a ⊂ referent lifetimes of x, y, and z

• in this case,

'a ⊂ (life time of a) ∩ (life time of b) ∩ (life
time of c) = life time of c
• as a result, our program does not compile,

even if foo(&a,&b,&c) in fact returns &a

{

let r: &i32;

let a = 123;

{

let b = 456;

{

let c = 789;

r = foo(&a, &b, &c);

// 'a ← 𝛼∩ 𝛽 ∩ 𝛾 = 𝛾
// and r’s type becomes &𝛾 i32

} // c’s lifetime (= 𝛾) ends here
} // b’s lifetime (= 𝛽) ends here
*r // NG, as we are outside 𝛾

} // a’s lifetime (= 𝛼) ends here

43 / 55

An annotation that works

fn foo<'a,'b,'c>(ra: &'a i32, rb: &'b i32, rc: &'c i32)->&'a i32

• signifies that the return value points to data
whose lifetime is ra’s referent lifetime (and
has nothing to do with rb’s or rc’s)

• for foo(x, y, z), Rust compiler tries to
determine 'a so that 'a ⊂ referent lifetimes of
x

• as a result, the program we are discussing
compiles

{

let r: &i32;

let a = 123;

{

let b = 456;

{

let c = 789;

r = foo(&a, &b, &c);

// 'a ← 𝛼
// and r’s type becomes &𝛼 i32

} // c’s lifetime (= 𝛾) ends here
} // b’s lifetime (= 𝛽) ends here
*r // OK, as here is within 𝛼

} // a’s lifetime (= 𝛼) ends here

44 / 55

Types with lifetime parameters capture/constrain the function’s behavior

• what if you try to fool the compiler by:

fn foo<'a,'b,'c>(ra: &'a i32, rb: &'b i32, rc: &'c i32) -> &'a i32 {
rb

}

• the compiler rejects returning rb (of type &'b) when the function’s return
type is &'a, as it cannot infer

lifetime represented by 'a ⊂ lifetime represented by 'b

45 / 55

References in data structures

struct A { b : &B }

struct B { c : &C }

struct C { x : i32 }

fn baz(a : &mut A, b: &B) {

a.b = b

}

does not compile

⇒
struct C { x : i32 }

46 / 55

References in data structures

struct A { b : &B }

struct B { c : &C }

struct C { x : i32 }

fn baz(a : &mut A, b: &B) {

a.b = b

}

does not compile

⇒
struct B<'c> { c : &'c C }
struct C { x : i32 }

46 / 55

References in data structures

struct A { b : &B }

struct B { c : &C }

struct C { x : i32 }

fn baz(a : &mut A, b: &B) {

a.b = b

}

does not compile

⇒ struct A<'b,'c> { b : &'b B<'c> }
struct B<'c> { c : &'c C }
struct C { x : i32 }

46 / 55

References in data structures

struct A { b : &B }

struct B { c : &C }

struct C { x : i32 }

fn baz(a : &mut A, b: &B) {

a.b = b

}

does not compile

⇒ struct A<'b,'c> { b : &'b B<'c> }

struct B<'c> { c : &'c C }

struct C { x : i32 }

fn baz<'a,'b,'c','d,'e> (a : &'a mut A<'b,'c>,

b: &'d B<'e>) {

a.b = b

}

46 / 55

References in data structures

struct A { b : &B }

struct B { c : &C }

struct C { x : i32 }

fn baz(a : &mut A, b: &B) {

a.b = b

}

does not compile

⇒ struct A<'b,'c> { b : &'b B<'c> }

struct B<'c> { c : &'c C }

struct C { x : i32 }

fn baz<'a,'b,'c','d,'e> (a : &'a mut A<'b,'c>,

b: &'d B<'e>) {

a.b = b

}

does not compile

46 / 55

References in data structures

struct A { b : &B }

struct B { c : &C }

struct C { x : i32 }

fn baz(a : &mut A, b: &B) {

a.b = b

}

does not compile

⇒ struct A<'b,'c> { b : &'b B<'c> }
struct B<'c> { c : &'c C }
struct C { x : i32 }

fn baz<'a,'b,'c'>(a : &'a mut A<'b,'c>,
b: &'b B<'c>) {

a.b = b

}

46 / 55

References in data structures

struct A { b : &B }

struct B { c : &C }

struct C { x : i32 }

fn baz(a : &mut A, b: &B) {

a.b = b

}

does not compile

⇒ struct A<'b,'c> { b : &'b B<'c> }
struct B<'c> { c : &'c C }
struct C { x : i32 }

fn baz<'a,'b,'c'>(a : &'a mut A<'b,'c>,
b: &'b B<'c>) {

a.b = b

}

does compile

46 / 55

Dereferencing data structure

• as stated earlier, dereferencing a borrowing pointer of type &'a ... is
allowed at program point 𝑝 when:

𝑝 ⊂ lifetime represented by 'a

• the rule is actually more strict; for types involving lifetime parameters
(e.g., A<'a,'b,'c,...>), the above applies to all parameters

47 / 55

Dereferencing data structure

• the following program is safe, but rejected by the compiler

struct S<'a,'b> {
a : &'a i32,
b : &'b i32,

}

…

let a = 123;

let mut s = S{a: &a, b: &a};

{

let b = 456;

s.b = &b;

}

// s.b is a dangling pointer, but s.a is not
*s.a … (†)

48 / 55

Dereferencing data structure

• the following program is safe, but rejected by the compiler

struct S<'a,'b> {
a : &'a i32,
b : &'b i32,

}

…

let a = 123;

let mut s = S{a: &a, b: &a};

{

let b = 456;

s.b = &b;

} … 𝛽
// s.b is a dangling pointer, but s.a is not
*s.a … (†)

error[E0597]: `b` does not live long enough
 --> str.rs:11:15
 |
10 | let b = 456;
 | - binding `b` declared here
11 | s.b = &b;
 | ^^ borrowed value does not live long enough
12 | }
 | - `b` dropped here while still borrowed
13 | *s.a
 | ---- borrow later used here

48 / 55

Dereferencing data structure

• the following program is safe, but rejected by the compiler

struct S<'a,'b> {
a : &'a i32,
b : &'b i32,

}

…

let a = 123;

let mut s = S{a: &a, b: &a};

{

let b = 456;

s.b = &b;

} … 𝛽
// s.b is a dangling pointer, but s.a is not
*s.a … (†)

error[E0597]: `b` does not live long enough
 --> str.rs:11:15
 |
10 | let b = 456;
 | - binding `b` declared here
11 | s.b = &b;
 | ^^ borrowed value does not live long enough
12 | }
 | - `b` dropped here while still borrowed
13 | *s.a
 | ---- borrow later used here

• s.a is not allowed, because:
‣ the type of s is S<'a,'b> and
‣ 'b ⊂ 𝛽 (∵ s.b = &b);
‣ ∴ † ∉ 'b

48 / 55

Lifetime parameters in a function

• because of this restriction, the compiler can assume all lifetime parameters
that appear in the function parameters contain the function body

• the compiler deduces dereferencing a.b below is safe based on this
assumption

fn baz<'a,'b,'c'>(a : &'a mut A<'b,'c>,
b: &'b B<'c>) {

a.b = b

}

49 / 55

Summary

Why memory management is difficult

• every language wants to prevent dereferencing a pointer to an already-
reclaimed memory block (dangling pointer)

• the problem would have been trivial if you could reclaim 𝑣’s referent as
soon as 𝑣 goes out of scope

• this is not the case, as 𝑣’s referent may still be reachable from other
variables when 𝑣 goes out of scope

let p : &T;

{

let v = T{x: …};

…

p = &v;

} // v never used below, but its referent is
… p.x …

v
51 / 55

Why memory management is difficult

• every language wants to prevent dereferencing a pointer to an already-
reclaimed memory block (dangling pointer)

• the problem would have been trivial if you could reclaim 𝑣’s referent as
soon as 𝑣 goes out of scope

• this is not the case, as 𝑣’s referent may still be reachable from other
variables when 𝑣 goes out of scope

let p : &T;

{

let v = T{x: …};

…

p = &v;

} // v never used below, but its referent is
… p.x …

v
51 / 55

Why memory management is difficult

• every language wants to prevent dereferencing a pointer to an already-
reclaimed memory block (dangling pointer)

• the problem would have been trivial if you could reclaim 𝑣’s referent as
soon as 𝑣 goes out of scope

• this is not the case, as 𝑣’s referent may still be reachable from other
variables when 𝑣 goes out of scope

let p : &T;

{

let v = T{x: …};

…

p = &v;

} // v never used below, but its referent is
… p.x …

v

p !

51 / 55

C vs. GC vs. Rust

• C/C++ : it’s up to you
• GC : if it is reachable from other variables, I retain it for you
• Rust : when 𝑣 goes out of scope,

1. I reclaim 𝑇𝑣, all data reachable from 𝑣 through owning pointers
2. 𝑇𝑣 may be reachable from other variables via borrowing references, but

I guarantee such references are never dereferenced

C/C++ GC Rust

v

p

!
v

p

v

p X

Tv

52 / 55

How Rust achieves it?

• say two data structures 𝑇𝑣 rooted at variable v and 𝑇𝑝 rooted at variable p
• assume v goes out of scope earlier than p
• we wish to guarantee when v goes out of scope, it is safe to reclaim the

entire 𝑇𝑣
• generally it is of course not the case, as there may be pointers somewhere

in 𝑇𝑝 → somewhere in 𝑇𝑣

time

Tv
v (goes out of scope here)

p (goes out of scope here)

53 / 55

How Rust achieves it?

• say two data structures 𝑇𝑣 rooted at variable v and 𝑇𝑝 rooted at variable p
• assume v goes out of scope earlier than p
• we wish to guarantee when v goes out of scope, it is safe to reclaim the

entire 𝑇𝑣
• generally it is of course not the case, as there may be pointers somewhere

in 𝑇𝑝 → somewhere in 𝑇𝑣

time

Tv
v (goes out of scope here)

p (goes out of scope here)

????

Tp

53 / 55

How Rust achieves it?

• recall the “single-owner rule,” which guarantees there is only one owning
pointer to any node

• ⇒ there can be no owning pointers from outside 𝑇𝑣 to inside 𝑇𝑣

time

Tv
v (goes out of scope here)

p (goes out of scope here)

impossible

54 / 55

How Rust achieves it?

• recall the “single-owner rule,” which guarantees there is only one owning
pointer to any node

• ⇒ there can be no owning pointers from outside 𝑇𝑣 to inside 𝑇𝑣
• ⇒ any such pointer must be a borrowing pointer

time

x : &'a ...

Tv
v (goes out of scope here)

p (goes out of scope here)

54 / 55

How Rust achieves it?

• recall the “single-owner rule,” which guarantees there is only one owning
pointer to any node

• ⇒ there can be no owning pointers from outside 𝑇𝑣 to inside 𝑇𝑣
• ⇒ any such pointer must be a borrowing pointer
• recall that a borrowing pointer must have a lifetime parameter; e.g., 'a
• it must hold that 'a ⊂ lifetime of 𝑇𝑣

time

x : &'a ...

α
Tv

v (goes out of scope here)

'a ⊂ lifetime of Tv

p (goes out of scope here)

54 / 55

How Rust achieves it?

• any structure containing borrowing pointers must have these parameters as
part of its type (e.g., S<'a>)

• by 'a ⊂ lifetime of 𝑇𝑣, the containing data structure (of type S<'a>) cannot
be dereferenced after 𝑇𝑣 is gone

time

x : &'a ...

α
Tv

v (goes out of scope here)

p (goes out of scope here) S<'a>.

'a ⊂ lifetime of Tv

55 / 55

How Rust achieves it?

• any structure containing borrowing pointers must have these parameters as
part of its type (e.g., S<'a>)

• by 'a ⊂ lifetime of 𝑇𝑣, the containing data structure (of type S<'a>) cannot
be dereferenced after 𝑇𝑣 is gone

time

x : &'a ...

α
Tv

v (goes out of scope here)

cannot deref after α

p (goes out of scope here) S<'a>.

'a ⊂ lifetime of Tv

55 / 55

	Introduction
	Rust's basic idea to memory management
	The rules are enforced statically
	Escaping from the single ownership model

	Rust Basics
	Pointer-like data types in Rust
	Pointer-making expressions
	An example

	Owning Pointers
	Assignments of owning pointers
	Argument-passing also moves the reference
	Exceptions to "assignment moves the reference"
	Copy trait

	Box<T> type
	Box<T> makes an owning pointer
	Difference between T and Box<T>?
	Data layout differences between T and Box<T>
	Data layout differences between T and Box<T>
	Owning pointers and control flows
	A (huge) implication of the single-owner rule
	The (huge) implication to memory management
	Motto:

	Borrowing pointers (&T)
	Basics
	Borrowers rule in action
	A mutable borrowing reference (&mut T)

	Borrow-checking details
	A technical remark about the borrow-checking
	How borrow-checking works : lifetime
	How borrow-checking basically works
	Programming with borrowing references
	References in function calls
	References in data structures
	References in function parameters
	Reference type with a lifetime parameter
	Attaching lifetime parameters
	Attaching lifetime parameters to functions
	Why do we need an annotation, fundamentally?
	Attaching lifetime parameters
	One way to attach lifetime parameters to the example
	An annotation that works
	Types with lifetime parameters capture/constrain the function's behavior
	References in data structures
	Dereferencing data structure
	Dereferencing data structure
	Lifetime parameters in a function

	Summary
	Why memory management is difficult
	C vs. GC vs. Rust
	How Rust achieves it?
	How Rust achieves it?
	How Rust achieves it?

