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Introduction



Rust’s basic idea to memory management

• Rust maintains that, for any live object,
1. there is one and only one pointer that “owns” it (the owning pointer)
2. there are any number of non-owning pointers to it (borrowing pointers)
3. borrowing pointers cannot be dereferenced after the owning pointer

goes away
• ⇒ it can safely reclaim the data when the owning pointer goes away

“single-ownership rule”

own
borrow

borrow

{

let a = S{x: …, y: …};

…

} // what a points to will be gone here
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The rules are enforced statically

• Rust enforces the rules (or, detect violations thereof)
‣ statically, not dynamically
‣ compile-time, not at runtime
‣ before execution, not during execution

“borrow checker”
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Escaping from the single ownership model

• there are actually some ways to get around the rules

1. reference counting pointers (≈ multiple owning pointers)
• counts the number of owners at runtime, and reclaim the data when all

these pointers are gone
2. unsafe/raw pointers (≈ totally up to you)

they are not specific to Rust, and we’ll not cover them below
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Rust Basics



Pointer-like data types in Rust

given a type 𝑇  (i32, struct, enum, …), below are types representing
“references (pointers) to 𝑇 ”

1. 𝑇  : owning pointer to 𝑇
2. Box<𝑇 > (pronounced “box 𝑇 ”) : owning pointer to 𝑇
3. &𝑇  (pronounced “ref 𝑇 ”) : borrowing pointer to 𝑇
4. Rc<𝑇 > and Arc<𝑇 > : shared (reference-counting) owning pointer to 𝑇
5. *𝑇  : unsafe pointer to 𝑇

following discussions are focused on
𝑇 , Box<𝑇 > and &𝑇 T or Box<T>

&T

&T
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Pointer-making expressions

given an expression 𝑒 of type 𝑇 , below are expressions that make pointers to
the value of 𝑒 (besides 𝑒 itself)

• Box::new(𝑒) (of type Box<𝑇 >) : an owning pointer
• &𝑒 (of type &𝑇 ) : a borrowing pointer
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An example

{

let a: S = S{x: …}; // allocate memory for S
// and make an owning pointer to it

let b: S = a // an owning pointer
let c: Box<S> = Box::<S>::new(a) // an owning pointer
let d: &S = &a // a borrowing pointer

}

• note: type of variables can be omitted (spelled out for clarity)
• note: the above program violates several rules so it does not compile
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Owning Pointers



Assignments of owning pointers

• to maintain the “single-owner” rule, an assignment of owning pointers in
Rust does not copy, but moves it out of the righthand side, disallowing
further use of it

b = a; // a cannot be used below

fn foo() {

let a = S{x: …, y: …};

… a.x …; // OK, as expected
… a.y …; // OK, as expected

}

a
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Assignments of owning pointers

• to maintain the “single-owner” rule, an assignment of owning pointers in
Rust does not copy, but moves it out of the righthand side, disallowing
further use of it

b = a; // a cannot be used below

fn foo() {

let a = S{x: …, y: …};

… a.x …; // OK, as expected
… a.y …; // OK, as expected
// the reference moves out from a
let b = a;

a.x; // NG, the value has moved out
b.x; // OK

}

a

b
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Argument-passing also moves the reference

• passing a value to a function also moves the reference out of the source

fn foo() {

let a = S{x: …, y: …};

… a.x …; // OK, as expected
… a.y …; // OK, as expected

}

afoo
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Argument-passing also moves the reference

• passing a value to a function also moves the reference out of the source

fn foo() {

let a = S{x: …, y: …};

… a.x …; // OK, as expected
… a.y …; // OK, as expected
// moves the reference out of a
f(a);

a.x; // NG, the reference has moved
}

afoo
xf(x)
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Exceptions to “assignment moves the reference”

• you may notice the moving assignment contradicts what you have seen

b = a; // a cannot be used after this

• if it applies everywhere, does the following program violate it?

fn foo() -> f64 {

let a = 123.456;

let b = a; // does the reference to 123.456 move out from a!?
a + 0.789 // if so, is this invalid!?

}

• answer: no, it does not apply to primitive types like i32, f64, etc.
• more generally, it does not apply to data types that implement Copy trait
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Copy trait

• define your struct with #[derive(Copy, Clone)] like

#[derive(Copy, Clone)]

struct S { … }

• ⇒ assignment or argument-passing of S copies the righthand side

fn foo() {

let a = S{x: …, y: …};

a.x; // OK, as expected
a.y; // OK, as expected

}

a

• note: copy types trivially maintain the
single-owner rule

14 / 55



Copy trait

• define your struct with #[derive(Copy, Clone)] like

#[derive(Copy, Clone)]

struct S { … }

• ⇒ assignment or argument-passing of S copies the righthand side

fn foo() {

let a = S{x: …, y: …};

a.x; // OK, as expected
a.y; // OK, as expected
// the value is copied
let b = a;

a.x; // OK
b.x; // OK, too

}

a

b

• note: copy types trivially maintain the
single-owner rule
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Box<𝑇 > type



Box<𝑇 > makes an owning pointer

• making a pointer by Box::new(𝑣) moves the reference out of 𝑣, too, and
Box::new(𝑣) becomes the owning pointer

fn foo() {

let a = S{x: …, y: …};

a.x; // OK, as expected
a.y; // OK, as expected

}

a
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Box<𝑇 > makes an owning pointer

• making a pointer by Box::new(𝑣) moves the reference out of 𝑣, too, and
Box::new(𝑣) becomes the owning pointer

fn foo() {

let a = S{x: …, y: …};

a.x; // OK, as expected
a.y; // OK, as expected
// OK, now b is the owning pointer
let b = Box::new(a)

a.x; // NG, the value has moved out
(*b).x; // OK
b.x; // OK. abbreviation of (*b).x

}

a

b
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Difference between 𝑇  and Box<𝑇 >?

• as you have seen, the effects of

let b = a

and

let b = Box::new(a)

look very similar (identical)

• as far as data lifetime is concerned, it is in fact safe to say they are
• Rust has distinction between them for

1. specifying data layout
2. allowing dynamic dispatch only for Box<𝑇 >
3. specifying where data are allocated (stack vs. heap)
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Data layout differences between 𝑇  and Box<𝑇 >

• S and U below have different data layouts
‣ struct S { …, p: 𝑇, } “embeds” a 𝑇  into S
‣ struct U { …, p: Box<𝑇>, } has p point to a separately allocated 𝑇

S

Tp:

U

T

Box<T>p:
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Data layout differences between 𝑇  and Box<𝑇 >

• in particular, Box<𝑇 > is essential to define recursive data structures
‣ struct S { …, p: S, } is not allowed, whereas
‣ struct U { …, p: Box<U>, } is

• note: U above can never be constructed; a recursive data structure typically
uses enum or Option<Box<..>>
‣ struct U { …, p: Option<Box<U>>, }
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Data layout differences between 𝑇  and Box<𝑇 >

• the distinction is insignificant when discussing lifetimes

S

Tp:

U

T

Box<T>p:

• in both cases, data of 𝑇  (yellow box) is gone exactly when the enclosing
structure is gone

• another difference is that Rust allocates 𝑇  on stack and move it to heap
when Box<𝑇 > is made
‣ but again, it has nothing to do with lifetime (unlike C/C++)
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Owning pointers and control flows

• Rust compiler determines, for each variable of owning pointer type (𝑇  or
Box<𝑇 >), at which point the variable can be used (i.e., the value has not
been moved out)

• it may be a conservative estimate

fn foo() {

let a = S{x: …, y: …};

if … {

let b = a;

}

… a.x … // NG
}

fn foo() {

let a = S{x: …, y: …};

for … {

let b = a; // NG
}

}
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A (huge) implication of the single-owner rule

• with only owning pointers (𝑇  and Box<𝑇 >),
‣ you can make a tree of data,
‣ but you cannot make a general graph with joins

or cycles, where a node may be pointed to by
multiple nodes

• to make a graph whose nodes are 𝑇 , use either
‣ &𝑇  to represent edges, or
‣ Vec<𝑇 > to represent nodes and Vec<(i32,
i32)> to represent edges
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The (huge) implication to memory management

• with only owning pointers (i.e., no borrowing
pointers)

• whenever an owning pointer is gone (e.g.,
‣ a variable goes out of scope or
‣ a variable or field is overwritten),

the entire tree rooted from the pointer can be
safely reclaimed

{

let t = make_tree(…);

…

} … // t deallocated here
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The (huge) implication to memory management

• Rust exactly does that, with the additional guarantee that borrowing
pointers are never dereferenced after its owning pointer is gone
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Motto:

lifetime of data = lifetime of its owning pointer

= program points its owning pointer can be dereferenced (†)

≈ the block its owning pointer variable is defined

{

let s = S{ … }; // or Box::new(S{...})
…

…

} … // referent of s reclaimed here

• (†) : determined by control flows and assignments, to be precise
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Borrowing pointers (&𝑇 )



Basics

• you can derive any number of borrowing pointers (&𝑇 ) from 𝑇  or Box<𝑇 >
• the owning pointer remains valid after a borrowing pointer has been made

let a = S{x: .., y: ..};

let b = &a;

… a.x + b.x … // OK

• the issue is how to prevent a program from dereferencing borrowing
pointers after its owning pointer is gone
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Borrowers rule in action

• a borrowing pointer cannot be dereferenced after its owning pointer is gone

fn foo() -> i32 {

let c: &S; // a reference to S

}

c : &S
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Borrowers rule in action

• a borrowing pointer cannot be dereferenced after its owning pointer is gone

fn foo() -> i32 {

let c: &S; // a reference to S
{ // an inner block
let b: &S; // another reference

}

}

b : &S
c : &S
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Borrowers rule in action

• a borrowing pointer cannot be dereferenced after its owning pointer is gone

fn foo() -> i32 {

let c: &S; // a reference to S
{ // an inner block
let b: &S; // another reference
let a = S{x: …}; // allocate S

}

}

b : &S
c : &S

a : S
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Borrowers rule in action

• a borrowing pointer cannot be dereferenced after its owning pointer is gone

fn foo() -> i32 {

let c: &S; // a reference to S
{ // an inner block
let b: &S; // another reference
let a = S{x: …}; // allocate S
// OK (both a and b live only until the end of

the inner block)
b = &a;

}

}

b : &S
c : &S

a : S
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Borrowers rule in action

• a borrowing pointer cannot be dereferenced after its owning pointer is gone

fn foo() -> i32 {

let c: &S; // a reference to S
{ // an inner block
let b: &S; // another reference
let a = S{x: …}; // allocate S
// OK (both a and b live only until the end of

the inner block)
b = &a;

c = b; // dangerous (c outlives a)
}

}

b : &S
c : &S

a : S
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Borrowers rule in action

• a borrowing pointer cannot be dereferenced after its owning pointer is gone

fn foo() -> i32 {

let c: &S; // a reference to S
{ // an inner block
let b: &S; // another reference
let a = S{x: …}; // allocate S
// OK (both a and b live only until the end of

the inner block)
b = &a;

c = b; // dangerous (c outlives a)
} // a dies here, making c a dangling pointer
c.x // NG (deref a dangling pointer)

}

b : &S
c : &S

a : S

!
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A mutable borrowing reference (&mut 𝑇 )

• data cannot be modified through ordinary borrowing references &𝑇

let a : S = S{x: 10, y: 20};

let b : &S = &a;

b.x = 100; // NG

• i.e., &𝑇  is the type of immutable references
• you can modify data only through a mutable reference (&mut 𝑇 )

let mut a : S = S{x: 10, y: 20};

let b : &mut S = &mut a;

b.x = 100; // OK

• the difference is largely orthogonal to memory management
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Borrow-checking details



A technical remark about the borrow-checking

• it’s not dangling pointers, per se, that are prevented, but their dereferencing

• the previous code compiles as long as c is not dereferenced

fn foo() -> i32 {

let c: &S; // a reference to S
{ // an inner block
let b: &S; // another reference
let a = S{x: …}; // allocate S
// OK (both a and b live only until the end of the inner block)
b = &a;

c = b; // dangerous (c outlives a)
} // a dies here, making c a dangling pointer
// c.x don’t deref c

}
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How borrow-checking works : lifetime

• lifetime of data
‣ = program points where the data has not been deallocated
‣ = program points where the data’s owning pointer is valid

• for each borrowing pointer, Rust compiler determines the lifetime of data it
points to (referent lifetime) as its static type

• upon assignment 𝑝 = 𝑞 between borrowing pointers, it demands

referent lifetime of 𝑝 ⊂ referent lifetime of 𝑞
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How borrow-checking basically works

fn foo() -> i32 {

let c: &S;

{

let b: &S;

let a = S{x: …}; // lives until 𝛼

}

}

1. the owning pointer a’s lifetime is
the inner block; call it 𝛼 (…)

2. let 𝛽 and 𝛾 be referent lifetimes of
b and c, respectively
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How borrow-checking basically works

fn foo() -> i32 {

let c: &S;

{

let b: &S;

let a = S{x: …}; // lives until 𝛼
b = &a; // b’s referent lifetime ⊂ a’s = 𝛼
c = b; // c’s referent lifetime ⊂ b’s = 𝛼  … 𝛼

}

}

1. the owning pointer a’s lifetime is
the inner block; call it 𝛼 (…)

2. let 𝛽 and 𝛾 be referent lifetimes of
b and c, respectively

3. due to the assignments,
• b = &a ⇒ 𝛽 ⊂ 𝛼
• c = b ⇒ 𝛾 ⊂ 𝛽 (⊂ 𝛼)
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How borrow-checking basically works

fn foo() -> i32 {

let c: &S;

{

let b: &S;

let a = S{x: …}; // lives until 𝛼
b = &a; // b’s referent lifetime ⊂ a’s = 𝛼
c = b; // c’s referent lifetime ⊂ b’s = 𝛼  … 𝛼

}

c.x // NG (deref outside c’s referent lifetime = 𝛼)
}

1. the owning pointer a’s lifetime is
the inner block; call it 𝛼 (…)

2. let 𝛽 and 𝛾 be referent lifetimes of
b and c, respectively

3. due to the assignments,
• b = &a ⇒ 𝛽 ⊂ 𝛼
• c = b ⇒ 𝛾 ⊂ 𝛽 (⊂ 𝛼)

4. dereference c.x must be ⊂ 𝛾 (⊂
𝛼), which is not the case (i.e.,
invalid)
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Programming with borrowing references

• in more general cases, programs using borrowing references must help
compilers track their referent lifetimes

• this must be done for functions called from unknown places, function calls
to unknown functions and data structures

• to this end, the programmer sometimes must annotate reference types with
their referent lifetimes
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References in function calls

• how to check the validity of a functions call without knowing its body?

{

let r : &i32;

let a = 123;

{

let b = 456;

{

let c = 789;

r = foo(&a, &b, &c);  … 𝛾
}  … 𝛽

}

*r // (†)  … 𝛼
}

‣ *r should be safe if f(p, q,
r) returns a reference whose
referent lifetime contains (†);
i.e., p
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References in data structures

• how to check the validity of dereferencing references obtained from a data
structure

struct A { b : &B }

struct B { c : &C }

struct C { x : i32 }

…

let c = C{x : 123};

let b = B{c : &c};

let mut a = A{b : &b};

a.b.c.x // OK?
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References in data structures

• how to check the validity of dereferencing references obtained from a data
structure

struct A { b : &B }

struct B { c : &C }

struct C { x : i32 }

…

let c = C{x : 123};

let b = B{c : &c};

let mut a = A{b : &b};

{

let b2 = B{c : &c};

a.b = &b2;

}

a.b.c.x // OK?
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References in function parameters

• how to check the validity of functions taking references or structures
containing references, without knowing all its callers

fn bar(a : &mut &i32, b : &i32) {

*a = b;

}

• what if references are in structures …

fn baz(a : &mut A, b: &B) {

a.b = b

}
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Reference type with a lifetime parameter

• to address these problems, Rust’s borrowing reference types (&𝑇  or &mut
𝑇 ) carry lifetime parameter representing their referent lifetimes

T

lives until 'a
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Reference type with a lifetime parameter

• to address these problems, Rust’s borrowing reference types (&𝑇  or &mut
𝑇 ) carry lifetime parameter representing their referent lifetimes

• syntax:
‣ &'𝑎 𝑇  : reference to “𝑇  whose lifetime is '𝑎”
‣ &'𝑎 mut 𝑇  : ditto; except you can modify data through it

&'a T T

lives until 'a
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Reference type with a lifetime parameter

• to address these problems, Rust’s borrowing reference types (&𝑇  or &mut
𝑇 ) carry lifetime parameter representing their referent lifetimes

• syntax:
‣ &'𝑎 𝑇  : reference to “𝑇  whose lifetime is '𝑎”
‣ &'𝑎 mut 𝑇  : ditto; except you can modify data through it

• every reference carries a lifetime parameter,
though there are places you can omit them

• roughly, you must write them explicitly in
function parameters, return types, and struct/enum
fields; and can omit them for local variables

&'a T T

lives until 'a
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Attaching lifetime parameters

• rule: reference types that appear in function parameters, return types, and
struct/enum fields must have explicit lifetime paramters
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Attaching lifetime parameters to functions

• therefore the following does not compile:

fn foo(ra: &i32, rb: &i32, rc: &i32) -> &i32 {

ra

}

with errors like:
|
| fn foo(ra: &i32, rb: &i32, rc: &i32) -> &i32 {
|            ----      ----      ----     ^ expected named lifetime parameter
|
= help: this function's return type contains a borrowed value, but the signature does not say
whether it is borrowed from `ra`, `rb`, or `rc`
help: consider introducing a named lifetime parameter
|
| fn foo<'a>(ra: &'a i32, rb: &'a i32, rc: &'a i32) -> &'a i32 {
|       ++++      ++           ++           ++          ++
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Why do we need an annotation, fundamentally?

• without any annotation, how to know whether this is safe, without knowing
the body of foo?

{

let r : &i32;

let a = 123;

{

let b = 456;

{

let c = 789;

r = foo(&a, &b, &c);

}

}

*r

}

• essentially, the compiler complains “tell me
what kind of referent lifetime the reference
returned by foo(&a, &b, &c) has”

• it must be inferred without knowing the body of
foo, only from its type
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Attaching lifetime parameters

• functions

fn f<'a,'b,'c,...> (𝑝0 : 𝑇0, 𝑝1 : 𝑇1, …) -> 𝑇𝑟 { … }

• structs/enums

struct A<'a,'b,'c,...> {
𝑓0 : 𝑇0,
𝑓1 : 𝑇1,
…

}

• 𝑇0, 𝑇1,…, and 𝑇𝑟 may use 'a, 'b, 'c, … as lifetime parameters (e.g., &'a
i32)
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One way to attach lifetime parameters to the example

fn foo<'a>(ra: &'a i32, rb: &'a i32, rc: &'a i32) -> &'a i32

• effect: the return value is assumed to point to
the shortest of the three

• why? generally, when Rust compiler finds
foo(x, y, z), it tries to determine 'a so that
'a ⊂ referent lifetimes of x, y, and z

• in this case,

'a ⊂ (life time of a) ∩ (life time of b) ∩ (life
time of c) = life time of c
• as a result, our program does not compile,

even if foo(&a,&b,&c) in fact returns &a

{

let r: &i32;

let a = 123;

{

let b = 456;

{

let c = 789;

r = foo(&a, &b, &c);

// 'a ← 𝛼∩ 𝛽 ∩ 𝛾 = 𝛾
// and r’s type becomes &𝛾 i32

} // c’s lifetime (= 𝛾) ends here
} // b’s lifetime (= 𝛽) ends here
*r // NG, as we are outside 𝛾

} // a’s lifetime (= 𝛼) ends here
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An annotation that works

fn foo<'a,'b,'c>(ra: &'a i32, rb: &'b i32, rc: &'c i32)->&'a i32

• signifies that the return value points to data
whose lifetime is ra’s referent lifetime (and
has nothing to do with rb’s or rc’s)

• for foo(x, y, z), Rust compiler tries to
determine 'a so that 'a ⊂ referent lifetimes of
x

• as a result, the program we are discussing
compiles

{

let r: &i32;

let a = 123;

{

let b = 456;

{

let c = 789;

r = foo(&a, &b, &c);

// 'a ← 𝛼
// and r’s type becomes &𝛼 i32

} // c’s lifetime (= 𝛾) ends here
} // b’s lifetime (= 𝛽) ends here
*r // OK, as here is within 𝛼

} // a’s lifetime (= 𝛼) ends here
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Types with lifetime parameters capture/constrain the function’s behavior

• what if you try to fool the compiler by:

fn foo<'a,'b,'c>(ra: &'a i32, rb: &'b i32, rc: &'c i32) -> &'a i32 {
rb

}

• the compiler rejects returning rb (of type &'b) when the function’s return
type is &'a, as it cannot infer

lifetime represented by 'a ⊂ lifetime represented by 'b
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References in data structures

struct A { b : &B }

struct B { c : &C }

struct C { x : i32 }

fn baz(a : &mut A, b: &B) {

a.b = b

}

does not compile

⇒
struct C { x : i32 }
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References in data structures

struct A { b : &B }

struct B { c : &C }

struct C { x : i32 }

fn baz(a : &mut A, b: &B) {

a.b = b

}

does not compile

⇒
struct B<'c> { c : &'c C }
struct C { x : i32 }
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References in data structures

struct A { b : &B }

struct B { c : &C }

struct C { x : i32 }

fn baz(a : &mut A, b: &B) {
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Dereferencing data structure

• as stated earlier, dereferencing a borrowing pointer of type &'a ... is
allowed at program point 𝑝 when:

𝑝 ⊂ lifetime represented by 'a

• the rule is actually more strict; for types involving lifetime parameters
(e.g., A<'a,'b,'c,...>), the above applies to all parameters
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Dereferencing data structure

• the following program is safe, but rejected by the compiler

struct S<'a,'b> {
a : &'a i32,
b : &'b i32,

}

…

let a = 123;

let mut s = S{a: &a, b: &a};

{

let b = 456;

s.b = &b;

}

// s.b is a dangling pointer, but s.a is not
*s.a … (†)
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struct S<'a,'b> {
a : &'a i32,
b : &'b i32,

}

…

let a = 123;

let mut s = S{a: &a, b: &a};

{

let b = 456;

s.b = &b;

}  … 𝛽
// s.b is a dangling pointer, but s.a is not
*s.a … (†)

error[E0597]: `b` does not live long enough
  --> str.rs:11:15
   |
10 |         let b = 456;
   |             - binding `b` declared here
11 |         s.b = &b;
   |               ^^ borrowed value does not live long enough
12 |     }
   |     - `b` dropped here while still borrowed
13 |     *s.a
   |     ---- borrow later used here

• s.a is not allowed, because:
‣ the type of s is S<'a,'b> and
‣ 'b ⊂ 𝛽 (∵ s.b = &b);
‣ ∴ † ∉ 'b
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Lifetime parameters in a function

• because of this restriction, the compiler can assume all lifetime parameters
that appear in the function parameters contain the function body

• the compiler deduces dereferencing a.b below is safe based on this
assumption

fn baz<'a,'b,'c'>(a : &'a mut A<'b,'c>,
b: &'b B<'c>) {

a.b = b

}
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Summary



Why memory management is difficult

• every language wants to prevent dereferencing a pointer to an already-
reclaimed memory block (dangling pointer)

• the problem would have been trivial if you could reclaim 𝑣’s referent as
soon as 𝑣 goes out of scope

• this is not the case, as 𝑣’s referent may still be reachable from other
variables when 𝑣 goes out of scope

let p : &T;

{

let v = T{x: …};

…

p = &v;

} // v never used below, but its referent is
… p.x …

v
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{
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p = &v;

} // v never used below, but its referent is
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C vs. GC vs. Rust

• C/C++ : it’s up to you
• GC : if it is reachable from other variables, I retain it for you
• Rust : when 𝑣 goes out of scope,

1. I reclaim 𝑇𝑣, all data reachable from 𝑣 through owning pointers
2. 𝑇𝑣 may be reachable from other variables via borrowing references, but

I guarantee such references are never dereferenced

C/C++ GC Rust

v

p

!
v

p

v

p X

Tv
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How Rust achieves it?

• say two data structures 𝑇𝑣 rooted at variable v and 𝑇𝑝 rooted at variable p
• assume v goes out of scope earlier than p
• we wish to guarantee when v goes out of scope, it is safe to reclaim the

entire 𝑇𝑣
• generally it is of course not the case, as there may be pointers somewhere

in 𝑇𝑝 → somewhere in 𝑇𝑣

time

Tv
v (goes out of scope here)

p (goes out of scope here)
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How Rust achieves it?

• recall the “single-owner rule,” which guarantees there is only one owning
pointer to any node

• ⇒ there can be no owning pointers from outside 𝑇𝑣 to inside 𝑇𝑣

time

Tv
v (goes out of scope here)

p (goes out of scope here)

impossible
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How Rust achieves it?

• recall the “single-owner rule,” which guarantees there is only one owning
pointer to any node

• ⇒ there can be no owning pointers from outside 𝑇𝑣 to inside 𝑇𝑣
• ⇒ any such pointer must be a borrowing pointer
• recall that a borrowing pointer must have a lifetime parameter; e.g., 'a
• it must hold that 'a ⊂ lifetime of 𝑇𝑣

time

x : &'a ...

α
Tv

v (goes out of scope here)

'a ⊂ lifetime of Tv

p (goes out of scope here)
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How Rust achieves it?

• any structure containing borrowing pointers must have these parameters as
part of its type (e.g., S<'a>)

• by 'a ⊂ lifetime of 𝑇𝑣, the containing data structure (of type S<'a>) cannot
be dereferenced after 𝑇𝑣 is gone

time

x : &'a ...

α
Tv

v (goes out of scope here)

p (goes out of scope here) S<'a>.

'a ⊂ lifetime of Tv
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• by 'a ⊂ lifetime of 𝑇𝑣, the containing data structure (of type S<'a>) cannot
be dereferenced after 𝑇𝑣 is gone

time

x : &'a ...

α
Tv

v (goes out of scope here)

cannot deref  after α
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