
Implementing a Compiler

Kenjiro Taura

2024/06/23

Contents

Contents
The MinC (“Minimum C”) language . 2
Overview of Inside a Compiler . 4
Lexer and parser : source code → AST . 10
Code generation . 37
Intermediate Representation (IR) . 55

1 / 57

The MinC (“Minimum C”)
language

MinC (“Minimum C”) spec overview

• all expressions have type long (64 bit integer)
‣ no other integers, floating point numbers, pointers, or structs
‣ everything is long ⇒ type checks are unnecessary

• no global variables or typedef
‣ ⇒ a program = list of function definitions

• supported complex statements are if, while, and compound statement
({ ... }) only

• function calls follow the C convention ⇒ MinC code can call or be called
by functions compiled by other compilers (e.g., gcc)

3 / 57

Overview of Inside a
Compiler

Data structures

• Abstract Syntax Tree (AST): data
structure representing the program

abstract syntax tree
(AST)source code

machine/assembly code

code generator
(cogen)

lexer + parser

5 / 57

Data structures

• Abstract Syntax Tree (AST): data
structure representing the program

• Intermediate Representation
(IR): common representation
portable across multiple source/
target languages

IR generator

abstract syntax tree
(AST)source code

intermediate
representation (IR)

machine/assembly code

optimizer

code generator
(cogen)

lexer + parser

5 / 57

Typical compilation steps

1. lexing and parsing: source code (string) → AST
2. IR generation: AST → IR (∗)
3. optimization: IR → IR (∗)
4. code generation: IR → assembly

(∗) : optional

6 / 57

Abstract Syntax Tree (AST)

• a data structure that naturally represents a program

• expression,
• statement,
• function definition,
• the whole program,
• …

while

x 10 y

++<

• also called parse tree

7 / 57

Components of the baseline code

• parser/
‣ minc_grammar.y … grammar definition
‣ minc_to_xml.py … MinC → XML converter

• {go,jl,ml,rs}/minc/
‣ minc_ast.?? … abstract syntax tree (AST) definition
‣ minc_parse.?? … XML → AST
‣ minc_cogen.?? … AST → assembly
‣ main.?? or minc.?? … main driver

8 / 57

Your work

• files other than minc_cogen.?? are given and need not be modified (unless
you do something extra)

• minc_cogen.?? is almost empty and your primary job is to complete it

9 / 57

Lexer and parser : source
code → AST

Lexer and parser

• lexer: string → sequence of tokens (≈ words)
‣ also called lexical analyzer, or tokenizer
‣ while (x < 10) y++; ⇒

while (x < 10) y ++ ;

WHILE LP ID CMP INT RP ID PLSPLS SEMICOLON

11 / 57

Lexer and parser

• parser: sequence of tokens → AST

while (x < 10) y ++ ;

WHILE LP ID CMP INT RP ID PLSPLS SEMICOLON ⇒

while

x 10 y

++<

12 / 57

Specifying a grammar

• a grammar for tokens
‣ specifies which character sequence constitutes a valid token
‣ typically uses Regular Expressions (RE)

• a grammar for the entire inputs
‣ specifies which token sequence constitutes a valid input
‣ typically uses (a subset of) Context Free Grammar (CFG)

• note: there is an approach that uses a single grammar for both

13 / 57

Regular expression

• a regular expression is any expression that can be formed by:

𝜀 (empty string)
𝑐 (a character)
𝐸 𝐸 (concatenation)
𝐸 | 𝐸 (alternation)
𝐸* (zero or more repetition)
(𝐸) (paren)

where 𝐸 is a regular expression
• |, *, (and) are literals

14 / 57

Regular expression

• expressions for convenience

𝐸+ ≡ 𝐸 𝐸* (one or more repetition)
𝐸? ≡ 𝜀 | 𝐸 (optional)

15 / 57

Regular expression examples

• to build complex expressions, use symbols to represent regular expressions
used in other regular expressions. e.g.,

nz = 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 1, 2, …, 9

digit = 0 | nz 0, 1, 2, …, 9

non_neg = 0 | nz digit* 0, 12, 34

int = -? non_neg 0, −0, 12, −34

fraction = int (. digit*)? −12.34

float = fraction (e int) −12.34e-5

alpha = A | B | … Z | a | b | … z A, B, …, Z, a, b, …, z

alpha_ = alpha | _ A, B, …, Z, a, b, …, z, _

16 / 57

Regular expression examples

id = alpha_ (alpha_ | digit)* a, abc, a0_b1

17 / 57

Regular expression semantics (just for formality …)

• a regular expression 𝐸 represents a set of strings, written ⟦𝐸⟧

⟦𝜀⟧ = { “” }
⟦𝑐⟧ = { 𝑐 }
⟦𝐸0 𝐸1⟧ = { 𝑒0 + 𝑒1 | 𝑒0 ∈ ⟦𝐸0⟧, 𝑒1 ∈ ⟦𝐸1⟧ }
⟦𝐸0 | 𝐸1⟧ = ⟦𝐸0⟧ ∪ ⟦𝐸1⟧
⟦𝐸*⟧ = { “” } ∪ {𝑒0 + 𝑒1 | 𝑒0 ∈ ⟦𝐸⟧, 𝑒1 ∈ ⟦𝐸*⟧ }
⟦(𝐸)⟧ = ⟦𝐸⟧

• note: “+” represents string concatenation

18 / 57

Context Free Grammar (CFG)

• specified by a collection of production rules
• a production rule looks like

𝐿 → 𝑅0 𝑅1 …

where
• 𝐿 : a symbol (non-terminal)
• 𝑅𝑖 is either
‣ a symbol defined by a production rule(s), or
‣ a token name (a terminal symbol)

19 / 57

An example : expressions

expr → int 12, 345, …

expr → id f, x, i, is_prime, …

expr → unop expr -x, exp, !a_greater_than_b

expr → expr binop expr x + y, a * x + b * y + 1, a & b, …

expr → (expr) 3 * (a + 1)

expr → funcall

• blue symbols (int, id, unop, binop, (,)) are terminals (tokens)
• above rules overlook the fact that some operators (i.e., + and -) can be used

as a unary operator and a binary operator

20 / 57

An example : function call

funcall → id (comma_exprs) f(x, 2 * y, 1)

comma_exprs →
comma_exprs → expr
comma_exprs → expr comma_expr_star
comma_expr_star →
comma_expr_star → , expr comma_expr_star

21 / 57

An example : statements

stmt → ;
stmt → continue ;
stmt → break ;
stmt → return ;
stmt → { decl* stmt* }
stmt → if (expr) stmt (else stmt)?
stmt → while (expr) stmt
stmt → expr ;

22 / 57

Notes

• as you have seen,
‣ the same symbol 𝐿 can appear multiple times in the lefthand side (i.e.,

alternation)
‣ 𝑅𝑖 can be 𝐿 or any symbol defined earlier or later (i.e., definitions can

be recursive)

23 / 57

A few shorthands

• we often use shorthands (|, ?, *, +) that have similar meanings with those
for RE

• they can be mechanically eliminated
• the above example using the shorthands:

expr → int | id | unop expr | expr binop expr | funcall
funcall → id (comma_exprs)
comma_exprs → | expr (, expr)*

24 / 57

CFG semantics (for formality)

• each symbol 𝐿 represents a set of token sequences (⟦𝐿⟧)
• ⟦𝐿⟧ is the set of token sequences that can result by, starting from 𝐿,

repeatedly replacing a non-terminal symbol to the righthand side of its
production rule, until it becomes a sequence of tokens (terminals)

expr → funcall
→ id (comma_exprs)
→ id (expr comma_expr_star)
→ id (id comma_expr_star)
→ id (id , expr comma_expr_star)
→ id (id , expr + expr comma_expr_star)
→ id (id , id + expr comma_expr_star)

25 / 57

CFG semantics (for formality)

→ id (id , id + int comma_expr_star)
→ id (id , id + int)

∴ id (id , id + int) (e.g., f(x, y + 1)) ∈ ⟦expr⟧

26 / 57

An alternative semantics

• ⟦.⟧ is the minimal set of token sequences satisfying:

1. ⟦ 𝑡 ⟧ = { 𝑡 } (𝑡 : terminal)
2. 𝐿 → 𝑅0 … 𝑅𝑛−1 implies

𝑟0 ∈ ⟦𝑅0⟧, …, 𝑟𝑛−1 ∈ ⟦𝑅𝑛−1⟧
⇒ 𝑟0 + … + 𝑟𝑛−1 ∈ ⟦𝐿⟧

• “+” represents concatenation of token sequences

27 / 57

CFG is more expressive than RE

• as you might have noticed, RE is a special case of CFG
• all the constructs of RE can be straightforwardly expressed with CFG
• e.g., a CFG equivalent to RE “int = 0 | nz digit*”

int → 0
int → nz digits

digits →
digits → digit digits

digit → 0
digit → nz

nz → 1 | … | 9

28 / 57

In general …

• below, 𝐶(𝑒, 𝐿) is a function that converts regular expression 𝑒 to an
equivalent CFG s.t., ⟦𝐿⟧ = ⟦𝑒⟧

𝐶(𝜀, 𝐿) = {𝐿 →}
𝐶(𝑐, 𝐿) = {𝐿 → 𝑐}

𝐶(𝐸0 𝐸1, 𝐿) = {𝐿 → 𝑅0 𝑅1} ∪ 𝐶(𝐸0, 𝑅0) ∪ 𝐶(𝐸1, 𝑅1)
𝐶(𝐸0|𝐸1, 𝐿) = {𝐿 → 𝑅0, 𝐿 → 𝑅1} ∪ 𝐶(𝐸0, 𝑅0) ∪ 𝐶(𝐸1, 𝑅1)

𝐶(𝐸*, 𝐿) = {𝐿 → | 𝑅 𝐿} ∪ 𝐶(𝐸, 𝑅)
𝐶((𝐸))] = 𝐶(𝐸, 𝐿)

• 𝑅, 𝑅0 and 𝑅1 are unique symbols that do not appear elsewhere

29 / 57

A CFG that cannot be expressed by RE

• intuitively, RE can repeat (𝐸*) but cannot recurse
• e.g., both “𝐴 → | 𝑎 𝐴” and “𝐴 → | 𝐴 𝑎” can be expressed by an RE (both

are equivalent to 𝑎*), but

𝐴 → | 𝑎 𝐴 𝑏

cannot (⟦𝐴⟧ = {𝜀, 𝑎𝑏, 𝑎𝑎𝑏𝑏, 𝑎𝑎𝑎𝑏𝑏𝑏, …} = {𝑎𝑛𝑏𝑛 | 𝑛 ≥ 0})
• the proof is interesting but omitted

30 / 57

https://en.wikipedia.org/wiki/Pumping_lemma_for_regular_languages

If RE ⊂ CFG, why use both (not just CFG)?

• parsing general CFG is expensive (𝑂(length3))
• the primary reason is handling alternatives requires backtrack

𝐴 → 𝐵0 𝐵1 … | 𝐶0 𝐶1 … | 𝐷0 𝐷1 …

• practical parsers take either of the following two approaches
1. allow only alternatives that can be determined with a limited lookahead

(LL(1), LALR(1), etc.)
2. allow backtrack with programmer-supplied cut points (Parsing

Expression Grammar; PEG)

31 / 57

CFG with a limited lookahead (LL(1), LALR(1), etc.)

• recall the syntax of statement

stmt → ; | continue ; | break ; | return ; | { decl* stmt* }
| if (expr) stmt (else stmt)? | while (expr) stmt
| expr ;

• upon parsing a statement, which branch we should take can be determined
just by its first token

• it is essential to have a separate tokenizer for this type of grammar
(looking ahead a token ≠ looking ahead a character)

32 / 57

Parsing Expression Grammar (PEG)

• PEG allows unlimited lookahead (uses backtrack)
• in an alternative, it always tries branches in the written order (the order

does matter!)
‣ 1st branch,
‣ if failed, 2nd branch,
‣ if failed, 3rd branch, …

• the programmer may insert a cut point
‣ if a parser succeeds thus far, it tries no other branches

33 / 57

Lexer/parser generators

• based on the grammar, either:
‣ write them by hand, or
‣ use a lexer/parser generators

• lexer generator generates a lexer from the definition of tokens (variables,
numbers, …)

• parser generator generates a parser from the definition of higher-level
constructs (expressions, statements, …)

• some grammar frameworks (PEG) specify them in a single framework

34 / 57

Lexer/parser generators

• many programming languages have lexer/parser generators:
‣ lex/yacc (flex/bison): C/C++
‣ ANTLR: C, C++, Java, Python, JavaScript, Go, …
‣ ocamllex/menhir: OCaml
‣ tatsu: Python
‣ etc.

35 / 57

https://en.wikipedia.org/wiki/Flex_(lexical_analyser_generator)
https://www.gnu.org/software/bison/?ref=geekmonkey.org
https://www.antlr.org/
https://dev.realworldocaml.org/parsing-with-ocamllex-and-menhir.html
https://tatsu.readthedocs.io/en/stable/

In this exercise …

• we use tatsu, a parser generator tool based on PEG, to generate a Python
program that converts C source into XML,

• which is then read by the respective XML library you have used before for
your language

• see grammar syntax in tatsu
‣ thanks to PEG, no need for separate definitions of tokens

• the MinC grammar in tatsu is given in minc_grammar.y

36 / 57

https://tatsu.readthedocs.io/en/stable/
https://tatsu.readthedocs.io/en/stable/syntax.html

Code generation

Code generation (minc_cogen) — basic structure

• takes an AST and returns machine code (a list of instructions)
• generate machine code for an AST ≈ generate machine code of its

components and properly arrange them
• program → function definition → statement → expression

38 / 57

Code generation (minc_cogen) — basic structure

• code generator has lots of:
‣ case analysis based on the type of the tree; use:

– pattern matching (match à la OCaml and Rust), or
– polymorphism (OCaml objects, Julia function, Go interface, Rust

trait)
‣ recursive calls to child trees

39 / 57

Compiling an entire file

• ≈ concatenate compilation of individual function definitions

long f() {
 ...
}

long g() {
 ...
}

long h() {
 ...
}

f:
 ...
 ...

g:
 ...
 ...

h()
 ...
 ...

 .file "a.c"
 .text

 .ident "MCC"

Pseudo code:

ast_to_asm_program (Program([d0, d1, ...])) ... =
 ...
 header
 + (ast_to_asm_def d0 ...)
 + (ast_to_asm_def d1 ...)
 + ...
 + trailer

40 / 57

Compiling a function definition

• ≈ prologue (grow the stack, etc.) + code for the body (statement) +
epilogue (shrink the stack, ret, etc.)

f:
 grow stack

 save args

 ...
 ...
 ...
 ...

 shrink stack

 ret

long f() {
 ...
 ...
 ...
}

Pseudo code:

ast_to_asm_def (DefFun(f, params, ret_type, body)) =
 (gen_prologue f ...)
 + (ast_to_asm_stmt body ...)
 + (gen_epilogue f ...)

41 / 57

Compiling a statement (while statement)

• ≈ jump to the condition expression; body; the condition expression;
compare and conditional branch

while () {
 ...
 ...
 ...
}

Lc:

jmp Lc

cmp ...,0

b.ne Ls

Ls:

ast_to_asm_while_stmt (StmtWhile(cond, body)) ... =
 cond_op,cond_insns = ast_to_asm_expr cond ... ;
 body_insns = ast_to_asm_stmt body ... ;
 ...
 [jmp Lc; Ls]
 + body_insns
 + [Lc]
 + cond_insns
 + [cmp cond_op,0; jne Ls]

• (ast_to_asm_expr expr …) returns a pair: (instructions to evaluate expr,
the location of the result)

42 / 57

Compiling an expression (arithmetic)

• ≈ instructions to evaluate the arguments; the arithmetic instruction

mov x0,...
ldr x1,[sp,XX]
add x0,x0,x1

+ str ...,[sp,XX]

ast_to_asm_add_expr ExprOp("+", [e0; e1]) ... =
 insns1,op1 = ast_to_asm_expr e1 ... ;
 insns0,op0 = ast_to_asm_expr e0 ... ;
 m = (* a slot on the stack for e1 *);
 (insns1
 + [str op1,m]
 + insns0
 + [mov x0,op0;
 ldr x1,m;
 add x0,x0,x1],
 x0)

43 / 57

Compiling an expression (comparison)

• 𝐴 < 𝐵 is an expression that evaluates to:
‣ 1 if 𝐴 < 𝐵
‣ 0 if 𝐴 >= 𝐵

• this can be done by cmp + conditional set (cset)

44 / 57

Compiling an expression (comparison)

• ≈ compile the arguments; compare; conditional set

mov x0,...
ldr x1,[sp,XX]
cmp x0,x1
cset x0,lt

< str ...,[sp,XX]

ast_to_asm_cmp_expr (ExprOp("<", [e0; e1])) ... =
 insns1,op1 = ast_to_asm_expr e1 ... ;
 insns0,op0 = ast_to_asm_expr e0 ... ;
 m1 = (* a slot on the stack for e1 *);
 ...
 (insns1
 + [str op1,m1]
 + insns0
 + [mov x0,op0;
 ldr x1,m1;
 cmp x0,x1;
 cset x0,lt],
 x0)

45 / 57

Compiling an expression (function call)

• ≈ instructions for all arguments; put them to positions specified by ABI; a
bl instruction

ldr x0,[sp,XX0]
ldr x1,[sp,XX1]
ldr x2,[sp,XX2]
ldr x3,[sp,XX3]
bl f

 f(, , ,)

str ...,[sp,XX3]

str ...,[sp,XX2]

str ...,[sp,XX1]

str ...,[sp,XX0]

ast_to_asm_call_expr (ExprCall(f, [e0;e1;...])) ... =
 [(i0,op0);(i1,op1);..],[m0;m1;...]
 = ast_to_asm_exprs [e0;e1;...] ...;
 ((i0 + [str op0,m0])
 + (i1 + [str op1,m1])
 + ...
 + [ldr x0,m0;
 ldr x1,m1;
 ...;
 bl f],
 x0)

46 / 57

A few left-out details

• how to determine locations to save values of subexpressions and variables?
• that is, how to determine XX below:

mov x0,...
ldr x1,[sp,XX]
add x0,x0,x1

+ str ...,[sp,XX]

47 / 57

Determining where to save subexpressions

• ast_to_asm_expr E receives a
value (v) pointing to the lowest
end of free space in the current
stack frame

• ast_to_asm_expr E 𝑣 ...
generates instructions that evaluate
E using (destroying) only addresses
at or above SP+𝑣 sp

vused

available

48 / 57

Determining where to save subexpressions

• when evaluating 𝐴 + 𝐵,
1. evaluate 𝐵, using SP+𝑣 and higher; save the result at SP+𝑣
2. evaluate 𝐴, using 𝑣 + 8 and higher addresses

mov x0,...
ldr x1,[sp,XX]
add x0,x0,x1

+ str ...,[sp,XX]

 sp
vused

available
ast_to_asm_add_expr ExprOp("+",[e0;e1]) v ... =
 insns1,op1 = ast_to_asm_expr e1 v ... ;
 insns0,op0 = ast_to_asm_expr e0 (v+8) ... ;
 (insns1
 + [str op1,[sp,v]]
 + insns0
 + [mov x0,op0;
 ldr x1,[sp,v];
 add x0,x0,x1],
 x0)

49 / 57

Locations to hold variables

 if (...) {
 long a, b, c;
 ...
 }

we obviously need to store a, b, c somewhere, but
where?

• the problem is almost identical to saving values of subexpressions
• → ast_to_asm_stmt also takes 𝑣 pointing to the free space
• (ast_to_asm_stmt 𝑆 𝑣 …) generates instructions to execute 𝑆, using only

addresses at or above SP + 𝑣
• ⇒
‣ 𝑎 ↦ (SP + 𝑣)
‣ 𝑏 ↦ (SP + 𝑣 + 8)
‣ 𝑐 ↦ (SP + 𝑣 + 16)

50 / 57

Environment: records where variables are held

• variable locations must be known when generating code for expressions
referencing them
‣ e.g., to compile x + 1, we need to know where x is stored

• ⇒ make a data structure that holds a mapping: variable ↦ location
(environment) and pass it to ast_to_asm_stmt and ast_to_asm_expr
‣ generating code for variables look up the environment
‣ a compound statement ({ ... }) adds new mappings to the

environment

51 / 57

ast_to_asm_expr receives an environment

ast_to_asm_expr (ExprId(x)) env v =
 m = env_lookup x env;
 ([ldr x0,m], x0)

env_lookup x env searches environment env for x and returns its location

52 / 57

ast_to_asm_stmt receives an environment too

ast_to_asm_stmt (StmtCompound(decls, stmts)) env v =
 env', v' = env_extend decls env v;
 ast_to_asm_stmts stmts env' v' ...

• env_extend decls env v :
‣ assigns locations (𝑣, 𝑣 + 8, 𝑣 + 16, …) to variables declared in decls
‣ registers them in env
‣ returns the new environment env' and the new free space v'

53 / 57

Implementing environment

• an environment is a list of (variable name, location) pairs (association list)
• v = env_lookup x env
‣ returns the location paired with x in environment env

• env' = env_add x v env
‣ returns a new environment env' which has a new mapping
x ↦ v in addition to env

• (env', v') = env_extend decls v env
‣ can be easily built on env_add (left for you)

54 / 57

Intermediate Representation
(IR)

Intermediate Representation (IR)

• a common representation of programs used by a compiler
• roughly ≈ an assembly with unlimited variables
• purposes

1. achieve portability
‣ hopefully independent from the source language (C, C++, Rust, Go,

Julia, etc.)
‣ hopefully independent from the target language (x86, ARM,

PowerPC, etc.)
2. formulate optimizations as IR → IR transformations

• note: in the exercise you could design your IR, but it is not necessary (it is
possible to directly go from AST → asm)

56 / 57

Optimizations performed on IR level (a brief)

• constant folding and propagation — compute values at compile time
where possible

• hoisting — lift instructions in a loop outside of it
• function call inlining — replace a call to a function with its body
• register allocation — assign registers to variables to reduce memory

access

57 / 57

	The MinC ("Minimum C") language
	MinC ("Minimum C") spec overview

	Overview of Inside a Compiler
	Data structures
	Typical compilation steps
	Abstract Syntax Tree (AST)
	Components of the baseline code
	Your work

	Lexer and parser : source code → AST
	Lexer and parser
	Specifying a grammar
	Regular expression
	Regular expression
	Regular expression examples
	Regular expression semantics (just for formality …)
	Context Free Grammar (CFG)
	An example : expressions
	An example : function call
	An example : statements
	Notes
	A few shorthands
	CFG semantics (for formality)
	An alternative semantics
	CFG is more expressive than RE
	In general …
	A CFG that cannot be expressed by RE
	If RE ⊂ CFG, why use both (not just CFG)?
	CFG with a limited lookahead (LL(1), LALR(1), etc.)
	Parsing Expression Grammar (PEG)
	Lexer/parser generators
	Lexer/parser generators
	In this exercise …

	Code generation
	Code generation (minc_cogen) — basic structure
	Compiling an entire file
	Compiling a function definition
	Compiling a statement (while statement)
	Compiling an expression (arithmetic)
	Compiling an expression (comparison)
	Compiling an expression (comparison)
	Compiling an expression (function call)
	A few left-out details
	Determining where to save subexpressions
	Determining where to save subexpressions
	Locations to hold variables
	Environment: records where variables are held
	ast_to_asm_expr receives an environment
	ast_to_asm_stmt receives an environment too
	Implementing environment

	Intermediate Representation (IR)
	Intermediate Representation (IR)
	Optimizations performed on IR level (a brief)

