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The MinC (“Minimum C”)
language



MinC (“Minimum C”) spec overview

• all expressions have type long (64 bit integer)
‣ no other integers, floating point numbers, pointers, or structs
‣ everything is long ⇒ type checks are unnecessary

• no global variables or typedef
‣ ⇒ a program = list of function definitions

• supported complex statements are if, while, and compound statement
({ ... }) only

• function calls follow the C convention ⇒ MinC code can call or be called
by functions compiled by other compilers (e.g., gcc)
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Overview of Inside a
Compiler



Data structures

• Abstract Syntax Tree (AST): data
structure representing the program

abstract syntax tree
(AST)source code

machine/assembly code

code generator 
(cogen)

lexer + parser
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Data structures

• Abstract Syntax Tree (AST): data
structure representing the program

• Intermediate Representation
(IR): common representation
portable across multiple source/
target languages

IR generator 

abstract syntax tree
(AST)source code

intermediate 
representation (IR)

machine/assembly code

optimizer

code generator 
(cogen)

lexer + parser
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Typical compilation steps

1. lexing and parsing: source code (string) → AST
2. IR generation: AST → IR (∗)
3. optimization: IR → IR (∗)
4. code generation: IR → assembly

(∗) : optional
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Abstract Syntax Tree (AST)

• a data structure that naturally represents a program

• expression,
• statement,
• function definition,
• the whole program,
• …

while

x 10 y

++<

• also called parse tree
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Components of the baseline code

• parser/
‣ minc_grammar.y … grammar definition
‣ minc_to_xml.py … MinC → XML converter

• {go,jl,ml,rs}/minc/
‣ minc_ast.?? … abstract syntax tree (AST) definition
‣ minc_parse.?? … XML → AST
‣ minc_cogen.?? … AST → assembly
‣ main.?? or minc.?? … main driver
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Your work

• files other than minc_cogen.?? are given and need not be modified (unless
you do something extra)

• minc_cogen.?? is almost empty and your primary job is to complete it
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Lexer and parser : source
code → AST



Lexer and parser

• lexer: string → sequence of tokens (≈ words)
‣ also called lexical analyzer, or tokenizer
‣ while (x < 10) y++; ⇒

while ( x < 10 ) y ++ ;

WHILE LP ID CMP INT RP ID PLSPLS SEMICOLON

11 / 57



Lexer and parser

• parser: sequence of tokens → AST

while ( x < 10 ) y ++ ;

WHILE LP ID CMP INT RP ID PLSPLS SEMICOLON ⇒

while

x 10 y

++<
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Specifying a grammar

• a grammar for tokens
‣ specifies which character sequence constitutes a valid token
‣ typically uses Regular Expressions (RE)

• a grammar for the entire inputs
‣ specifies which token sequence constitutes a valid input
‣ typically uses (a subset of) Context Free Grammar (CFG)

• note: there is an approach that uses a single grammar for both
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Regular expression

• a regular expression is any expression that can be formed by:

𝜀 (empty string)
𝑐 (a character)
𝐸 𝐸 (concatenation)
𝐸 | 𝐸 (alternation)
𝐸* (zero or more repetition)
(𝐸) (paren)

where 𝐸 is a regular expression
• |, *, ( and ) are literals
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Regular expression

• expressions for convenience

𝐸+ ≡ 𝐸 𝐸* (one or more repetition)
𝐸? ≡ 𝜀 | 𝐸 (optional)
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Regular expression examples

• to build complex expressions, use symbols to represent regular expressions
used in other regular expressions. e.g.,

nz = 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 1, 2, …, 9

digit = 0 | nz 0, 1, 2, …, 9

non_neg = 0 | nz digit* 0, 12, 34

int = -? non_neg 0, −0, 12, −34

fraction = int ( . digit* )? −12.34

float = fraction ( e int ) −12.34e-5

alpha = A | B | … Z | a | b | … z A, B, …, Z, a, b, …, z

alpha_ = alpha | _ A, B, …, Z, a, b, …, z, _
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Regular expression examples

id = alpha_ ( alpha_ | digit )* a, abc, a0_b1
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Regular expression semantics (just for formality …)

• a regular expression 𝐸 represents a set of strings, written ⟦𝐸⟧

⟦𝜀⟧ = { “” }
⟦𝑐⟧ = { 𝑐 }
⟦𝐸0 𝐸1⟧ = { 𝑒0 + 𝑒1 | 𝑒0 ∈ ⟦𝐸0⟧, 𝑒1 ∈ ⟦𝐸1⟧ }
⟦𝐸0 | 𝐸1⟧ = ⟦𝐸0⟧ ∪ ⟦𝐸1⟧
⟦𝐸*⟧ = { “” } ∪ {𝑒0 + 𝑒1 | 𝑒0 ∈ ⟦𝐸⟧, 𝑒1 ∈ ⟦𝐸*⟧ }
⟦(𝐸)⟧ = ⟦𝐸⟧

• note: “+” represents string concatenation
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Context Free Grammar (CFG)

• specified by a collection of production rules
• a production rule looks like

𝐿 → 𝑅0 𝑅1 …

where
• 𝐿 : a symbol (non-terminal)
• 𝑅𝑖 is either
‣ a symbol defined by a production rule(s), or
‣ a token name (a terminal symbol)
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An example : expressions

expr → int 12, 345, …

expr → id f, x, i, is_prime, …

expr → unop expr -x,  exp, !a_greater_than_b

expr → expr binop expr x + y, a * x + b * y + 1, a & b, …

expr → ( expr ) 3 * (a + 1)

expr → funcall

• blue symbols (int, id, unop, binop, (, )) are terminals (tokens)
• above rules overlook the fact that some operators (i.e., + and -) can be used

as a unary operator and a binary operator
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An example : function call

funcall → id ( comma_exprs ) f(x, 2 * y, 1)

comma_exprs →
comma_exprs → expr
comma_exprs → expr comma_expr_star
comma_expr_star →
comma_expr_star → , expr comma_expr_star
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An example : statements

stmt → ;
stmt → continue ;
stmt → break ;
stmt → return ;
stmt → { decl* stmt* }
stmt → if ( expr ) stmt ( else stmt )?
stmt → while ( expr ) stmt
stmt → expr ;
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Notes

• as you have seen,
‣ the same symbol 𝐿 can appear multiple times in the lefthand side (i.e.,

alternation)
‣ 𝑅𝑖 can be 𝐿 or any symbol defined earlier or later (i.e., definitions can

be recursive)
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A few shorthands

• we often use shorthands (|, ?, *, +) that have similar meanings with those
for RE

• they can be mechanically eliminated
• the above example using the shorthands:

expr → int | id | unop expr | expr binop expr | funcall
funcall → id ( comma_exprs )
comma_exprs → | expr ( , expr )*
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CFG semantics (for formality)

• each symbol 𝐿 represents a set of token sequences (⟦𝐿⟧)
• ⟦𝐿⟧ is the set of token sequences that can result by, starting from 𝐿,

repeatedly replacing a non-terminal symbol to the righthand side of its
production rule, until it becomes a sequence of tokens (terminals)

expr → funcall
→ id ( comma_exprs )
→ id ( expr comma_expr_star )
→ id ( id comma_expr_star )
→ id ( id , expr comma_expr_star )
→ id ( id , expr + expr comma_expr_star )
→ id ( id , id + expr comma_expr_star )
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CFG semantics (for formality)

→ id ( id , id + int comma_expr_star )
→ id ( id , id + int )

∴ id ( id , id + int ) (e.g., f(x, y + 1)) ∈ ⟦expr⟧
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An alternative semantics

• ⟦.⟧ is the minimal set of token sequences satisfying:

1. ⟦ 𝑡 ⟧ = { 𝑡 } (𝑡 : terminal)
2. 𝐿 → 𝑅0 … 𝑅𝑛−1 implies

𝑟0 ∈ ⟦𝑅0⟧, …, 𝑟𝑛−1 ∈ ⟦𝑅𝑛−1⟧
⇒ 𝑟0 + … + 𝑟𝑛−1 ∈ ⟦𝐿⟧

• “+” represents concatenation of token sequences
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CFG is more expressive than RE

• as you might have noticed, RE is a special case of CFG
• all the constructs of RE can be straightforwardly expressed with CFG
• e.g., a CFG equivalent to RE “int = 0 | nz digit*”

int → 0
int → nz digits

digits →
digits → digit digits

digit → 0
digit → nz

nz → 1 | … | 9

28 / 57



In general …

• below, 𝐶(𝑒, 𝐿) is a function that converts regular expression 𝑒 to an
equivalent CFG s.t., ⟦𝐿⟧ = ⟦𝑒⟧

𝐶(𝜀, 𝐿) = {𝐿 →}
𝐶(𝑐, 𝐿) = {𝐿 → 𝑐}

𝐶(𝐸0 𝐸1, 𝐿) = {𝐿 → 𝑅0 𝑅1} ∪ 𝐶(𝐸0, 𝑅0) ∪ 𝐶(𝐸1, 𝑅1)
𝐶(𝐸0|𝐸1, 𝐿) = {𝐿 → 𝑅0, 𝐿 → 𝑅1} ∪ 𝐶(𝐸0, 𝑅0) ∪ 𝐶(𝐸1, 𝑅1)

𝐶(𝐸*, 𝐿) = {𝐿 → | 𝑅 𝐿} ∪ 𝐶(𝐸, 𝑅)
𝐶((𝐸))] = 𝐶(𝐸, 𝐿)

• 𝑅, 𝑅0 and 𝑅1 are unique symbols that do not appear elsewhere
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A CFG that cannot be expressed by RE

• intuitively, RE can repeat (𝐸*) but cannot recurse
• e.g., both “𝐴 → | 𝑎 𝐴” and “𝐴 → | 𝐴 𝑎” can be expressed by an RE (both

are equivalent to 𝑎*), but

𝐴 → | 𝑎 𝐴 𝑏

cannot (⟦𝐴⟧ = {𝜀, 𝑎𝑏, 𝑎𝑎𝑏𝑏, 𝑎𝑎𝑎𝑏𝑏𝑏, …} = {𝑎𝑛𝑏𝑛 | 𝑛 ≥ 0})
• the proof is interesting but omitted
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If RE ⊂ CFG, why use both (not just CFG)?

• parsing general CFG is expensive (𝑂(length3))
• the primary reason is handling alternatives requires backtrack

𝐴 → 𝐵0 𝐵1 … | 𝐶0 𝐶1 … | 𝐷0 𝐷1 …

• practical parsers take either of the following two approaches
1. allow only alternatives that can be determined with a limited lookahead

(LL(1), LALR(1), etc.)
2. allow backtrack with programmer-supplied cut points (Parsing

Expression Grammar; PEG)
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CFG with a limited lookahead (LL(1), LALR(1), etc.)

• recall the syntax of statement

stmt → ; | continue ; | break ; | return ; | { decl* stmt* }
| if ( expr ) stmt ( else stmt )? | while ( expr ) stmt
| expr ;

• upon parsing a statement, which branch we should take can be determined
just by its first token

• it is essential to have a separate tokenizer for this type of grammar
(looking ahead a token ≠ looking ahead a character)
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Parsing Expression Grammar (PEG)

• PEG allows unlimited lookahead (uses backtrack)
• in an alternative, it always tries branches in the written order (the order

does matter!)
‣ 1st branch,
‣ if failed, 2nd branch,
‣ if failed, 3rd branch, …

• the programmer may insert a cut point
‣ if a parser succeeds thus far, it tries no other branches
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Lexer/parser generators

• based on the grammar, either:
‣ write them by hand, or
‣ use a lexer/parser generators

• lexer generator generates a lexer from the definition of tokens (variables,
numbers, …)

• parser generator generates a parser from the definition of higher-level
constructs (expressions, statements, …)

• some grammar frameworks (PEG) specify them in a single framework
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Lexer/parser generators

• many programming languages have lexer/parser generators:
‣ lex/yacc (flex/bison): C/C++
‣ ANTLR: C, C++, Java, Python, JavaScript, Go, …
‣ ocamllex/menhir: OCaml
‣ tatsu: Python
‣ etc.
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In this exercise …

• we use tatsu, a parser generator tool based on PEG, to generate a Python
program that converts C source into XML,

• which is then read by the respective XML library you have used before for
your language

• see grammar syntax in tatsu
‣ thanks to PEG, no need for separate definitions of tokens

• the MinC grammar in tatsu is given in minc_grammar.y
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Code generation



Code generation (minc_cogen) — basic structure

• takes an AST and returns machine code (a list of instructions)
• generate machine code for an AST ≈ generate machine code of its

components and properly arrange them
• program → function definition → statement → expression
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Code generation (minc_cogen) — basic structure

• code generator has lots of:
‣ case analysis based on the type of the tree; use:

– pattern matching (match à la OCaml and Rust), or
– polymorphism (OCaml objects, Julia function, Go interface, Rust

trait)
‣ recursive calls to child trees
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Compiling an entire file

• ≈ concatenate compilation of individual function definitions

long f() {
  ...
}

long g() {
  ...
}

long h() {
  ...
}

f:
  ...
  ...

g:
  ...
  ...

h()
  ...
  ...

 .file "a.c"
 .text

 .ident "MCC"
 ....

Pseudo code:

ast_to_asm_program (Program([d0, d1, ...])) ... =
    ...
    header
  + (ast_to_asm_def d0 ...)
  + (ast_to_asm_def d1 ...)
  + ...
  + trailer
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Compiling a function definition

• ≈ prologue (grow the stack, etc.) + code for the body (statement) +
epilogue (shrink the stack, ret, etc.)

f:
    grow stack

    save args

    ...
    ...
    ...
    ...
    
    shrink stack

    ret

long f() {
  ...
  ...
  ...
}

Pseudo code:

ast_to_asm_def (DefFun(f, params, ret_type, body)) =
    (gen_prologue f ...)
  + (ast_to_asm_stmt body ...)
  + (gen_epilogue f ...)
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Compiling a statement (while statement)

• ≈ jump to the condition expression; body; the condition expression;
compare and conditional branch

while (         ) {
  ...
  ...
  ...
}

Lc:

jmp Lc

cmp ...,0

b.ne Ls

Ls:

ast_to_asm_while_stmt (StmtWhile(cond, body)) ... =
   cond_op,cond_insns = ast_to_asm_expr cond ... ;
   body_insns = ast_to_asm_stmt body ... ;
     ... 
   [ jmp Lc; Ls ]
 + body_insns
 + [ Lc ]
 + cond_insns
 + [ cmp cond_op,0; jne Ls ]

• (ast_to_asm_expr expr …) returns a pair: (instructions to evaluate expr,
the location of the result)
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Compiling an expression (arithmetic)

• ≈ instructions to evaluate the arguments; the arithmetic instruction

mov x0,...
ldr x1,[sp,XX]
add x0,x0,x1

+ str ...,[sp,XX]

ast_to_asm_add_expr ExprOp("+", [e0; e1]) ... =
  insns1,op1 = ast_to_asm_expr e1 ... ;
  insns0,op0 = ast_to_asm_expr e0 ... ;
  m = (* a slot on the stack for e1 *);
  (  insns1
   + [ str op1,m ]
   + insns0
   + [ mov x0,op0;
       ldr x1,m;
       add x0,x0,x1 ],
   x0)
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Compiling an expression (comparison)

• 𝐴 < 𝐵 is an expression that evaluates to:
‣ 1 if 𝐴 < 𝐵
‣ 0 if 𝐴 >= 𝐵

• this can be done by cmp + conditional set (cset)
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Compiling an expression (comparison)

• ≈ compile the arguments; compare; conditional set

mov x0,...
ldr x1,[sp,XX]
cmp x0,x1
cset x0,lt

< str ...,[sp,XX]

ast_to_asm_cmp_expr (ExprOp("<", [e0; e1])) ... =
  insns1,op1 = ast_to_asm_expr e1 ... ;
  insns0,op0 = ast_to_asm_expr e0 ... ;
  m1 = (* a slot on the stack for e1 *);
    ...
  (insns1
   + [ str op1,m1 ]
   + insns0
   + [ mov x0,op0;
       ldr x1,m1;
       cmp x0,x1;
       cset x0,lt ],
   x0)
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Compiling an expression (function call)

• ≈ instructions for all arguments; put them to positions specified by ABI; a
bl instruction

ldr x0,[sp,XX0]
ldr x1,[sp,XX1]
ldr x2,[sp,XX2]
ldr x3,[sp,XX3]
bl f

 f(   ,    ,    ,   )

str ...,[sp,XX3]

str ...,[sp,XX2]

str ...,[sp,XX1]

str ...,[sp,XX0]

ast_to_asm_call_expr (ExprCall(f, [e0;e1;...])) ... =
  [(i0,op0);(i1,op1);..],[m0;m1;...]
    = ast_to_asm_exprs [e0;e1;...] ...;
  (  (i0 + [str op0,m0])
   + (i1 + [str op1,m1])
   + ...
   + [ldr x0,m0;
      ldr x1,m1;
      ...;
      bl f],
   x0)
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A few left-out details

• how to determine locations to save values of subexpressions and variables?
• that is, how to determine XX below:

mov x0,...
ldr x1,[sp,XX]
add x0,x0,x1

+ str ...,[sp,XX]
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Determining where to save subexpressions

• ast_to_asm_expr E receives a
value (v) pointing to the lowest
end of free space in the current
stack frame

• ast_to_asm_expr E 𝑣 ...
generates instructions that evaluate
E using (destroying) only addresses
at or above SP+𝑣   sp

vused

available
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Determining where to save subexpressions

• when evaluating 𝐴 + 𝐵,
1. evaluate 𝐵, using SP+𝑣 and higher; save the result at SP+𝑣
2. evaluate 𝐴, using 𝑣 + 8 and higher addresses

mov x0,...
ldr x1,[sp,XX]
add x0,x0,x1

+ str ...,[sp,XX]

  sp
vused

available
ast_to_asm_add_expr ExprOp("+",[e0;e1]) v ... =
  insns1,op1 = ast_to_asm_expr e1  v    ... ;
  insns0,op0 = ast_to_asm_expr e0 (v+8) ... ;
  (  insns1
   + [ str op1,[sp,v] ]
   + insns0
   + [ mov x0,op0;
       ldr x1,[sp,v];
       add x0,x0,x1],
   x0)
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Locations to hold variables

  if (...) {
    long a, b, c;
    ...
  }

we obviously need to store a, b, c somewhere, but
where?

• the problem is almost identical to saving values of subexpressions
• → ast_to_asm_stmt also takes 𝑣 pointing to the free space
• (ast_to_asm_stmt 𝑆 𝑣 …) generates instructions to execute 𝑆, using only

addresses at or above SP + 𝑣
• ⇒
‣ 𝑎 ↦ (SP + 𝑣)
‣ 𝑏 ↦ (SP + 𝑣 + 8)
‣ 𝑐 ↦ (SP + 𝑣 + 16)
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Environment: records where variables are held

• variable locations must be known when generating code for expressions
referencing them
‣ e.g., to compile x + 1, we need to know where x is stored

• ⇒ make a data structure that holds a mapping: variable ↦ location
(environment) and pass it to ast_to_asm_stmt and ast_to_asm_expr
‣ generating code for variables look up the environment
‣ a compound statement ({ ... }) adds new mappings to the

environment
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ast_to_asm_expr receives an environment

ast_to_asm_expr (ExprId(x)) env v =
  m = env_lookup x env;
  ([ ldr x0,m ], x0)

env_lookup x env searches environment env for x and returns its location
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ast_to_asm_stmt receives an environment too

ast_to_asm_stmt (StmtCompound(decls, stmts)) env v =
  env', v' = env_extend decls env v;
  ast_to_asm_stmts stmts env' v' ...

• env_extend decls env v :
‣ assigns locations (𝑣, 𝑣 + 8, 𝑣 + 16, …) to variables declared in decls
‣ registers them in env
‣ returns the new environment env' and the new free space v'
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Implementing environment

• an environment is a list of (variable name, location) pairs (association list)
• v = env_lookup x env
‣ returns the location paired with x in environment env

• env' = env_add x v env
‣ returns a new environment env' which has a new mapping
x ↦ v in addition to env

• (env', v') = env_extend decls v env
‣ can be easily built on env_add (left for you)
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Intermediate Representation
(IR)



Intermediate Representation (IR)

• a common representation of programs used by a compiler
• roughly ≈ an assembly with unlimited variables
• purposes

1. achieve portability
‣ hopefully independent from the source language (C, C++, Rust, Go,

Julia, etc.)
‣ hopefully independent from the target language (x86, ARM,

PowerPC, etc.)
2. formulate optimizations as IR → IR transformations

• note: in the exercise you could design your IR, but it is not necessary (it is
possible to directly go from AST → asm)
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Optimizations performed on IR level (a brief)

• constant folding and propagation — compute values at compile time
where possible

• hoisting — lift instructions in a loop outside of it
• function call inlining — replace a call to a function with its body
• register allocation — assign registers to variables to reduce memory

access
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