
Programming Lanaugages (4)

Parametric Polymorphism (aka Generic

Types/Functions)

Kenjiro Taura

1 / 10



Motivation

say want to write . . .

▶ a function that sorts arrays of various types (e.g., ints,
floats, strings, structs, . . . )

▶ a function that extracts elements from a list satisfying
p(x)

▶ stacks, queues, trees, graphs, hashtables, etc.

▶ variety of graph algorithms (breadth-first search,
depth-first search, connected components, partitioning,
etc.) that can/should work regardless of the exact data
type of each node

▶ . . .

without duplicating code for each underlying type

2 / 10



A trivial example (generic function)

write a function
f(a) = a[0]

in your language (an element of an array, let’s say)
Questions:

▶ do you have to specify the type of a?

▶ if so, how you can say “a must be an array but whose
element can be any type”

▶ if not, can it automatically apply to any array?
▶ does it type-check statically (i.e., what if you pass

something not an array)?

3 / 10



Type expressions

▶ things are conceptually straightforward

▶ but pains are around spelling out types

▶ master the syntax of type expressions, parameterized
types/functions, and instantiation thereof

4 / 10



Type expressions for functions

ex. a type of functions taking an integer and returning a
float

▶ Go : func (int64) float64

▶ Julia : Function
▶ cannot specify input/output types
▶ you normally don’t write it

▶ OCaml : int -> float

▶ you normally don’t have to write it

▶ Rust : fn (i64) -> f64

5 / 10



Type expressions for array-like data

ex. (one-dimensional) array (or likes) of 64-bit floating
point numbers

▶ Go :
▶ n-element array: [n]float64
▶ slice: []float64

▶ Julia : Vector{Float64}
▶ OCaml : float array

▶ Rust :
▶ n-element array : [f64; n]
▶ vector : Vec<f64>
▶ slice: [f64]

6 / 10



Defining parameterized types

ex. data type node, parameterized by any type T or ’a

▶ Go : type Node [T any] struct { ... }
▶ Julia : struct Node{T} ... end

▶ OCaml : class [’a] node ... = object ... end

▶ Rust : struct Node<T> { ... }
and a version parameterized by any subtype of S

▶ Go : type Node [T S] struct { ... }
▶ Julia : struct Node{T<:S} ... end

▶ OCaml : not possible

▶ Rust : struct Node<T:S> { ... }

7 / 10



Instantiating parameterized types

ex. Node of 64-bit integers

▶ Go : Node[int64]

▶ Julia : Node{Int64}
▶ OCaml : int node

▶ Rust : Node::<i64>

8 / 10



Defining parameterized functions

ex. a function bfs, which can work for any type

▶ Go : func bfs[T any](...) { ... }
▶ Julia : function bfs(...) where T ... end

▶ OCaml : let bfs ... = (nothing special)

▶ Rust : fn bfs<T>(...) { ... }
and a version that can work for any subtype of S

▶ Go : func bfs[T S](...) { ... }
▶ Julia : function bfs(...) where {T<:S} ... end

▶ OCaml : not possible

▶ Rust : fn bfs<T:S>(...) { ... }

9 / 10



Instantiating parameterized functions

▶ Go : func bfs[int64](...)}
▶ Julia : function bfs(...)

▶ OCaml : bfs ... (nothing special)

▶ Rust : fn bfs::<T>(...) { ... }

10 / 10


