
Programming Languages (3)

Going outside Jupyter

and Using Libraries

Kenjiro Taura

1 / 6



Objectives

▶ make programs outside Jupyter playground
▶ SSH (command line)
▶ editors, not web browsers
▶ build system

▶ use libraries

▶ split a program into multiple files (≈ use something
defined in another file)

2 / 6



Build system

many languages have “build system” to help you use
external libraries

▶ Go : go is it

▶ Julia : no particular build system

▶ OCaml : dune https://dune.build/

▶ Rust : cargo

3 / 6

https://dune.build/


Using libraries

using a library entails different procedures depending on
how “embedded” it is into the language

▶ some libraries are “builtin”
▶ automatically available in every program

▶ some libraries are “standard”
▶ you need to master how to refer to names in it
▶ you say “import” or “use” it and/or use prefixes to

refer to names in it
▶ installed with the language

▶ some libraries are “external”
▶ you may have to install it
▶ you may have to tell the compiler where it is

4 / 6



Importing a library to your program

▶ assume M is a module name and n a name defined in
M

▶ OCaml :
▶ call M.n
▶ open M and call n

▶ Julia :
▶ import M and call M.n
▶ using M and call n

▶ Go :
▶ import "M" and call M.n

▶ Rust :
▶ a module may contain a module
▶ assume C is the name of a “crate”
▶ call C::M0::M1:: · · · ::n
▶ use C::M0::M1:: · · · ::n and call n
▶ anywhere between the two

5 / 6



Repository of libraries

▶ master how to get information you need (names of
functions, their types, etc.) from those repositories

▶ is it builtin? standard? external?

▶ OCaml : opam https://opam.ocaml.org/

▶ Julia : Julia packages
https://julialang.org/packages/

▶ Go : https://pkg.go.dev/

▶ Rust : https://crates.io/

6 / 6

https://opam.ocaml.org/
https://julialang.org/packages/
https://pkg.go.dev/
https://crates.io/

