
Object-Oriented Programming

Kenjiro Taura

2024/04/28

Contents

Contents
What is object-oriented programming? . 2
Type Systems . 17
Polymorphism and type safety . 29

1 / 51

What is object-oriented
programming?

What is object-oriented programming?

… Object-oriented programming (OOP) is a programming
paradigm based on the concept of objects. Objects can
contain data (called fields, attributes or properties) and
have actions they can perform (called procedures or
methods and implemented in code).

— Wikipedia

3 / 51

Classes and objects : taxonomy

• class-based : in many languages, you first define a class (≈
template of objects)
‣ an object is made from a class (object = instance of a class)
‣ C++, Python, Go, Julia, Rust

• prototype-based or classless : in other languages, you can
create an object with or without defining a class
‣ an object can be made by a generic object expression or

from a class
‣ Javascript, OCaml

4 / 51

Classes and objects : examples

Python class definition Object creation
class point:
 def __init__(self, x, y):
 self.x = x;
 self.y = y;

a = point(1.2, 3.4)

5 / 51

Classless object creation : example

Javascript
let a = { "x" : 1.2, "y" : 3.4 }

OCaml (classless)
let a = object method x = 1.2 method y = 3.4 end

OCaml (with class)
class point (x : float) (y : float) =
 object method x = x method y = y end;;
let a = new point 1.2 3.4

6 / 51

Relevant keywords/syntax in our languages

language class definition object creation
Go type Point struct ... Point(1.2, 3.4)

Julia struct Point ... Point(1.2, 3.4)

Rust struct Point ... Point(1.2, 3.4)

OCaml class point ...
object ... end or
new point ...

7 / 51

Methods

• method ≈ function or procedures in any other language
• so what is different?
‣ multiple definitions of a method of the same name can exist

– e.g., an area method for rectangle, circle, triangle, etc.
‣ dynamic dispatch : when calling a method, which one gets

called depends on which objects it is called for

8 / 51

Dynamic dispatch : taxonomy

• single dispatch : many languages determine which method
gets called by the type of a single argument (“receiver” object)
‣ C++, Python, Go, OCaml, Rust

• multiple dispatch : some languages determine which method
gets called by the types of multiple arguments (objects)
‣ Julia

9 / 51

Single dispatch : example

• multiple definitions of area method in Python

class circle:
 ...
 def area(self):
 r = self.r
 return pi * r * r

class rect:
 ...
 def area(self):
 return self.w * self.h

• dispatch, based on whether s is circle or rect

shapes = [circle(...), rect(...)]
for s in shapes:
 s.area() # method call (s is the receiver)

10 / 51

A single dispatch in Julia

• multiple definitions of area method in Julia

function area(c :: Circle)
 pi * c.r * c.r
end

function area(r :: Rect)
 r.w * r.h
end

• dispatch, based on whether s is circle or rect

shapes = [Circle(...), Rect(...)]
for s in shapes
 area(s)
end

11 / 51

Multiple dispatch in Julia

• let’s say we define a method contains(𝑎, 𝑏) that computes
whether 𝑎 contains 𝑏

• Julia allows you to define it based on both 𝑎 and 𝑏

function contains(c0 :: Circle, c1 :: Circle) ...
function contains(c0 :: Circle, r1 :: Rect) ...
function contains(r0 :: Rect, c1 :: Circle) ...
function contains(r0 :: Rect, r1 :: Rect) ...

12 / 51

Power of dynamic dispatch

• dynamic dispatch allows a single piece of code to work on
many different kinds of data. e.g.,

• the following Python code

def sum(a, v0):
 v = v0
 for x in a:
 v += x
 return v

which is equivalent to

13 / 51

Power of dynamic dispatch

def sum(a, v0):
 v = v0
 it = a.__iter__()
 try:
 while True: # = for x in a
 x = it.__next__()
 v = v.__iadd__(x) # v += x
 except StopIteration:
 pass
 return v

works for any a (and v0) satisfying the following
14 / 51

Power of dynamic dispatch

• v0 has a method __iadd__(x), which takes a parameter and
returns anything that also has a method __iadd__(x), which
takes a parameter and returns anything that also has a method
__iadd__(x), which …

• a has a method __iter__(), which
‣ returns anything that has a method __next__(), which returns

anything for which v.__iadd__ works, … (details omitted)
…, and

‣ eventually raises StopIteration
15 / 51

Power of dynamic dispatch

• this is the reason why Python’s for loop works for lots of data
‣ lists, tuples, strings, dictionaries,
‣ file handles,
‣ numpy arrays
‣ database query results,

and you can define your data structure for which the same code
just works

16 / 51

Type Systems

Types

• types in programming languages ≈ kind of data. e.g.,
‣ integers, floating point numbers, array of integers, …
‣ there are user-defined types (e.g., circle, rect, etc.)

• the type of data generally determines what operations are valid
on it, e.g.,
‣ s.area(...) is valid if s is a circle, rect, or other type that

defines an area method
‣ a[i] = x is valid if a is an array, or other type that supports

indexed assignment (..[..] = ...)

18 / 51

Type errors at runtime

• at runtime, each data naturally has its type (dynamic type or
runtime type)

• when an operation not defined on the runtime type of data is
applied, a runtime type error results.

• e.g., Python code below gets an error in the third iteration

shapes = [circle(...), rect(...), (3,4)]
for s in shapes:
 s.area()

19 / 51

Runtime vs. static type checking

• some languages perform type checking during execution
(runtime type checking), which aborts the program with error
messages when detected
‣ Python, Javascript, Julia, …

• some languages (statically typed languages) perform type
checking before execution (static or compile-time type
checking), which refuses to execute programs containing
certain errors
‣ C, C++, Java, Go, OCaml, Rust, …

20 / 51

Static type checking and type safety

• some statically typed languages guarantee that no runtime
type errors will happen for programs that pass static type
checking (type safe languages)
‣ Go, OCaml, Rust, …

• it generally works by
‣ calculating the static or compile-time type of each

expression, and
‣ judging the validity of each operation by static types,
‣ before execution

21 / 51

Static type checking and type safety

• some languages do not guarantee no runtime type errors
despite static type checking
‣ some employ complementary runtime type checks, too

(Java)
‣ some forgo runtime type checks altogether; when a type

error happens at runtime, it may cause segmentation fault or
even worse, data corruption (C, C++)
– you will see why later in the course (assembly languages

and compilers)

22 / 51

A static type checking example (a hypothetical Python-like language)

l = [circle(..), circle(..)]
for c in l:
 c.area()

• static types (“expr : type” means expr has type)
‣ circle(..) : circle
‣ [circle(..), circle(..)] : list of circle
‣ l : list of circle
‣ c : circle
‣ c.area() : float

• this program is (well-)typed and never causes a runtime error
23 / 51

An example containing an error

l = [(3,4), (5,6)]
for p in l:
 p.area()

• static types
‣ (3,4) : pair of int
‣ [(3,4),(5,6)] : list of pair of int
‣ l : list of string
‣ p : pair of int
‣ p.area() : error (area on pair of int)

24 / 51

Is type safety difficult to achieve?

• in a simple case, no
• specifically, it is not difficult if the static type of an expression

uniquely determines its runtime type
‣ we call such a language simply typed
‣ in simply typed languages, each expression or variable can

take values of only a single runtime type
• Q : what’s wrong with simply typed languages?

25 / 51

Why simply typed languages do not suffice?

• they are inflexible and hider code reusability. e.g.,
• cannot put elements of different types in a single container

l = [rect(..), circle(..)]
for s in l:
 s.area() # what is the static type of s??

26 / 51

Why simply typed languages do not suffice?

• cannot have a single function definition of an array of different
types, even when element type should not matter

def n_elems(l): # list of what?
 n = 0
 for x in l:
 n += 1
 return n

n_elems([1,2,3])
n_elems(["a", "b", "c"])

27 / 51

Polymorphism

• in each of the examples, a single expression can take values of
different types at runtime

l = [rect(..), circle(..)]
for s in l:
 s.area()

n_elems([1,2,3])
n_elems(["a", "b", "c"])

• a variable or expression is said to be polymorphic when it can
take values of different runtime types

• a language is said to support polymorphism when it allows
polymorphic variables or expressions

28 / 51

Polymorphism and type
safety

Polymorphism and type safety

• forget about type safety ⇒ polymorphism is easy to achieve
‣ Julia, Python, Javascript, or many scripting languages

• forget about polymorphism (i.e., settle for simply typed
languages) ⇒ type safety is easy to achieve

• achieving both polymorphism and type safety is difficult

30 / 51

Static type system for polymorphism

• informally, we need a static type representing multiple
dynamic types

• two common approaches

1. subtype polymorphism : allows a single static type that
accommodates multiple types

2. parametric polymorphism : allows a static type having
parameter(s), which can be instantiated into multiple types

31 / 51

Subtype polymorphism

• s has a static type, like “shape”, that accommodates both rect
and circle

l = [rect(..), circle(..)]
for s in l:
 s.area()

• in this example, we say rect (and circle) is a subtype of shape
• or, shape is a supertype of rect (and circle)
• more on this later

32 / 51

Parametric polymorphism

• n_elems has a static type (like “∀𝛼. array of 𝛼 → int”),
which can be instantiated into “array of int” and “array of
string”

n_elems([1,2,3])
n_elems(["a", "b", "c"])

• we’ll cover this more in the next week

33 / 51

How static type checking works with subtyping

• in the hypothetical Python-like language

def smaller(s0 : shape, s1 : shape) -> shape:
 return (s0 if s0.area() < s1.area() else s1)

smaller(rect(..), circle(..))
smaller(circle(..), rect(..))

• s0, s1 : shape
• ⇒ s0.area(), s1.area() : float
• ⇒ s0.area() < s1.area() : boolean
• ⇒ s0 if ... else s1 : shape

34 / 51

The key question

• in the example above,
‣ smaller(rect(..), circle(..)) is valid. i.e.,
‣ passing a value of “rect” (or “circle”) type to a parameter of

“shape” type is allowed
• the key question:

for two types 𝑆 and 𝑇 when is an assignment-like
operation 𝑆 ← 𝑇 valid (safe if allowed)?

35 / 51

Note: assignment-like operation

• intuitively, any operation that flows a value to another place
‣ assignment (left hand side : 𝑆 ← right hand side 𝑇)
‣ passing arguments (formal arg : 𝑆 ← actual arg : 𝑇)

• in general, any operation where a value whose static type is 𝑇
becomes a value of another expression whose static type is 𝑆
‣ returning a value (return type 𝑆 ← returned expression : 𝑇)
‣ conditional expression (result type 𝑆 ← then/else

expression : 𝑇)

36 / 51

When is 𝑆 ← 𝑇 safe?

• informally, 𝑆 ← 𝑇 is safe when any operation applicable to
𝑆 is also applicable to 𝑇 (∗) (Liskov substitution principle)
‣ ex: “shape ← rect” is safe, because operation applicable to

(any) shape will be applicable to rect (whether it’s true
depends on how they are actually defined, of course)

• intuitively, 𝑇 is a kind of 𝑆
‣ ex: rect (circle) is a kind of shape

37 / 51

Subtype

• we write 𝑇 ≤ 𝑆 and say 𝑇 is a subtype of 𝑆 (and 𝑆 is a
supertype of 𝑇) when (∗) is the case
‣ ex: rect ≤ shape, circle ≤ shape

• if we think of a type as a set, ≤ represents a subset relation

• the exact definition of ≤ varies between languages, but (∗)
must hold to achieve type safety

38 / 51

Most generic subtype relationship

• if both 𝑆 and 𝑇 are record-like types (struct, class, etc.), 𝑇 ≤
𝑆 holds if the following two conditions (†) are met
1. 𝑇 has all the (public) methods/fields of 𝑆
2. for each public method 𝑚,

type of 𝑚 in 𝑇 ≤ type of 𝑚 in 𝑆

39 / 51

Subtype relationship example (1)

• shape
‣ has area() method returning float

• rect
‣ has area() method returning float
‣ has additional width() and height() methods

• rect ≤ shape holds

40 / 51

Subtype relationship example (2)

• shape
‣ has area() method returning float and
‣ perimeter() method returning float

• rect is the same as before

• rect ≤ shape does not (should not) hold

• to see why, consider

s : shape = rect(..)
s.perimeter()

41 / 51

Subtype relationship tricky example (3)

• shape
‣ has area() method returning float and
‣ eq(s : shape) method returning bool

• rect
‣ has area() method returning float,
‣ has width() and height() method each returning float, and
‣ eq(r : rect) method returning bool

• does rect ≤ shape hold?

42 / 51

Subtype relationship tricky example (3)

• no, it should not hold
• to see why not, consider

s : shape = rect(..)
s.eq(circle(..))

• which passes circle type to a formal argument of eq (rect type)

43 / 51

Subtype relationship tricky example (3)

• more algorithmically,

rect ≤ shape
⇒ type of eq in rect ≤ type of eq in shape
⇒ rect → bool ≤ shape → bool

• in general, 𝑎′ → 𝑏′ ≤ 𝑎 → 𝑏 holds when
‣ 𝑏′ ≤ 𝑏 and 𝑎′ ≥ 𝑎 (next slide)

⇒ shape ≤ rect (false)

44 / 51

Subtype relationship between functions

• 𝑎′ → 𝑏′ ≤ 𝑎 → 𝑏 holds when
‣ 𝑏′ ≤ 𝑏 and 𝑎′ ≥ 𝑎

• recall substitution principle (∗)
‣ assume 𝑓 ′ : 𝑎′ → 𝑏′ and 𝑓 : 𝑎 → 𝑏,
‣ and ask when 𝑓 ← 𝑓 ′ is safe?

• it is when “𝑓 ′ can take any data 𝑓 can take (𝑎)”. i.e.,
‣ 𝑎′ ≥ 𝑎 (𝑎′ is a supertype of 𝑎)

45 / 51

Covariant and contravariant

• in general, a type 𝑇 (𝛼) parameterized by 𝛼, is said to be
‣ covariant on 𝛼 if replacing 𝛼 with its subtype 𝛼′ yields its

subtype (i.e., 𝛼′ ≤ 𝛼 ⇒ 𝑇(𝛼′) ≤ 𝑇 (𝛼))
‣ contravariant on 𝛼 if replacing 𝛼 with its supertype 𝛼′

yields its subtype (i.e., 𝛼′ ≥ 𝛼 ⇒ 𝑇(𝛼′) ≤ 𝑇 (𝛼))

• in this terminology, a function type is
‣ covariant on output type (𝑏′ ≤ 𝑏 ⇒ 𝑎 → 𝑏 ≤ 𝑎 → 𝑏′)
‣ contravariant on input type (𝑎′ ≤ 𝑎 ⇒ 𝑎′ → 𝑏 ≤ 𝑎 → 𝑏)

46 / 51

Taxonomy of subtype relationships

• interface subtyping vs. concrete-type subtyping
‣ concrete-type subtyping (C++, Java, OCaml)

– ≤ is introduced between ordinary (concrete) types
‣ interface subtyping (Go, Rust)

– besides ordinary types, define abstract types, interfaces
(Go), or traits (Rust)

– ≤ is introduced only between interfaces or between a
concrete type and an interface

47 / 51

Taxonomy of subtype relationships

• nominal subtyping vs. structural subtyping
‣ nominal (Rust)

– ≤ holds only when the programmer so specified explicitly
(impl trait for struct)

‣ structural (Go, OCaml)
– ≤ is derived automatically from definitions

48 / 51

Go

type Shape interface { area() float64 }
type Rect struct { ... }
func (r Rect) area() float64 { ... }

• with Go structural subtyping, Rect ≤ Shape is automatically
established because Rect has an area method returning
float64, allowing the following assignment

var s shape = rect{0, 0, 100, 100}

49 / 51

Subtyping in Rust

trait Shape { fn area(&self) -> f64; }
struct Rect { ... }
impl Shape for Rect {
 fn area(&self) -> f64 { ... }
}

• with Rust (nominal subtyping between struct and trait), Rect ≤
Shape is established by explicitly stating impl Shape for Rect,
allowing the assignment below

let s : &dyn Shape = &Rect{ ... };

50 / 51

OCaml

• OCaml does not require type (class) definitions to make
objects

• when you define class, subtype relationship is automatically
derived

• nor does it require type of variables to be specified
• … everything just naturally happens (learn in the notebook)

51 / 51

	What is object-oriented programming?
	What is object-oriented programming?
	Classes and objects : taxonomy
	Classes and objects : examples
	Classless object creation : example
	Relevant keywords/syntax in our languages
	Methods
	Dynamic dispatch : taxonomy
	Single dispatch : example
	A single dispatch in Julia
	Multiple dispatch in Julia
	Power of dynamic dispatch

	Type Systems
	Types
	Type errors at runtime
	Runtime vs. static type checking
	Static type checking and type safety
	A static type checking example (a hypothetical Python-like language)
	An example containing an error
	Is type safety difficult to achieve?
	Why simply typed languages do not suffice?
	Why simply typed languages do not suffice?
	Polymorphism

	Polymorphism and type safety
	Polymorphism and type safety
	Static type system for polymorphism
	Subtype polymorphism
	Parametric polymorphism
	How static type checking works with subtyping
	The key question
	Note: assignment-like operation
	When is S ← T safe?
	Subtype
	Most generic subtype relationship
	Subtype relationship example (1)
	Subtype relationship example (2)
	Subtype relationship tricky example (3)
	Subtype relationship between functions
	Covariant and contravariant
	Taxonomy of subtype relationships
	Go
	Subtyping in Rust
	OCaml

