
Object-Oriented Programming

Kenjiro Taura

2024/04/28

Contents

Contents
What is Functional Programming? . 2
It is about Recursions! . 5
Abstracting Computation Patterns by Functions 22
Deep Recursion, Stack Overflow, and Tail Recursion 29

1 / 42

What is Functional
Programming?

1st attempt

… functional programming is a programming paradigm
where programs are constructed by applying and
composing functions.

— Wikipedia

• … well, I am almost always writing and applying functions,
…

3 / 42

2nd attempt

• asked copilot: describe the most important aspect of functional
programming in less than 100 words

The most important aspect of functional programming is immutability.
In functional programming, data is not changed after it is created.
Instead, functions return new data structures, ensuring that the
original data remains unchanged. This leads to more predictable and
reliable code, as it eliminates side effects and makes debugging easier.
Additionally, immutability facilitates parallel processing, as data
consistency is maintained across threads.

4 / 42

It is about Recursions!

My take

• The most important aspect is a cetain “way of thinking” when
you solve a problem,

• ≈ formulate the solution to the problem using recursion

6 / 42

An example

• Q: write a function that computes the sum of elements in an
array

• A: a “procedural” Python version

def sum_array(a):
 n = len(a)
 s = 0
 for i in range(n):
 s = s + a[i]
 return s

7 / 42

Thinking behind the procedural version

• Well, to compute a[0] + a[1] + ... + a[n-1],
‣ start with s = 0, and

s = s + a[0]
s = s + a[1]
 ...
s = s + a[n-1]

• … now s should hold what we want
• Remember the time you were confused by the “equation”?

s = s + a[i] # do you mean 0 = a[i] ??

8 / 42

A “functional” version

a[i] + a[i+1] + ... + a[j-1]
def sum_range(a, i, j):
 if i == j:
 return 0
 else:
 return a[i] + sum_range(a, i + 1, j)

def sum_array(a):
 return sum_range(a, 0, len(a))

9 / 42

A (superficial) characteristics of the functional version

• No updates to variables (like s = s + ...)
• No loops

… but the point is not about lack of something

10 / 42

The thinking behind the functional version

• The key observation:

(sum of 𝑎[0 : 𝑛]) = 𝑎[0] + (sum of 𝑎[1 : 𝑛])

and you can compute (sum of 𝑎[1 : 𝑛]) by a recursive call
• As a minor note, we defined a function to compute sum of an

array range 𝑎[𝑖 : 𝑗] by:

(sum of 𝑎[𝑖 : 𝑗]) = 𝑎[𝑖] + (sum of 𝑎[𝑖 + 1 : 𝑗]),

• plus a trivial base case (i.e., 𝑖 = 𝑗 ⇒ the sum is zero)
11 / 42

Reasoning correctness ≈ induction

a[i] + a[i+1] + ... + a[j-1]
def sum_range(a, i, j):
 if i == j:
 return 0
 else:
 return a[i] + sum_range(a, i + 1, j)

• We like to establish sum_range(𝑎, 𝑖, 𝑗) in fact returns

𝑎[𝑖] + … + 𝑎[𝑗 − 1] (⋆)

12 / 42

Reasoning correctness ≈ induction

1. 𝑗 − 𝑖 = 0 ⇒ sum_range(𝑎, 𝑖, 𝑗) returns 0 and 𝑎[𝑖] + … +
𝑎[𝑗 − 1] = 0

2. Otherwise, assume the statement is true for 𝑗 − 𝑖 < 𝑘
• Then, for 𝑗 − 𝑖 = 𝑘, sum_range returns

𝑎[𝑖] + sum_range(𝑎, 𝑖 + 1, 𝑗)
= 𝑎[𝑖] + (𝑎[𝑖 + 1] + … + 𝑎[𝑗 − 1]) (∵ induction hypothesis)
= 𝑎[𝑖] + … + 𝑎[𝑗 − 1] (that is, (⋆))

13 / 42

The “functional way” of problem solving

• ≈ solving a problem by recursive calls
• ≈ solving a problem, assuming solutions to smaller cases are

known

very powerful for the same reason why solving math problems
using recurrence relation (漸化式) and proving theorem by
induction (帰納法) are very powerful

14 / 42

Solving problems with recurrence relation : an example

• Q: Draw 𝑛 lines in a plane (no three lines intersect at a point).
How many regions will result?

15 / 42

Solving problems with recurrence relation : an example

• Q: Draw 𝑛 lines in a plane (no three lines intersect at a point).
How many regions will result?

• A: Let the number of
regions 𝑎𝑛. Then,

𝑎0 = 1,
𝑎𝑛 = 𝑎𝑛−1 + 𝑛 (𝑛 > 0)

+1
+1

+1
+1

15 / 42

Into a code …

• Math:

𝑎0 = 1,
𝑎𝑛 = 𝑎𝑛−1 + 𝑛 (𝑛 > 0)

• Code:

def n_regions(n):
 if n == 0:
 return 1
 else:
 return n_regions(n - 1) + n

16 / 42

Divide-and-conquer

• A powerful problem-solving paradigm that
1. divides the input into smaller subproblems,
2. solves (conquers) each subproblem recursively, and
3. combines their solutions to yield the solution

def solve(D):
 if D is trivially small:
 return trivial_solve(D)
 D0, D1, ... = divide(D)
 A0 = solve(D0); A1 = solve(D1); ...
 return combine(A0, A1, ...)

17 / 42

A textbook example (quicksort)

• Input : an array/list of 𝑛 elements 𝐴
• Output : sort 𝐴 (i.e., 𝐴[0] ≤ 𝐴[1] ≤ … ≤ 𝐴[𝑛 − 1])

def qs(A):
 if len(A) <= 1:
 return A
 piv = A[0]
 # divide
 lower = [x for x in A[1:n] if x < piv]
 higher = [x for x in A[1:n] if x >= piv]
 # conquer & combine
 return qs(lower) + [piv] + qs(higher)

18 / 42

Other examples

• merge sort
• Discrete Fourier Transform (DFT)
‣ 𝑂(𝑛2) algorithm is trivial
‣ FFT is a divide-and-conquer algorithm of 𝑂(𝑛 log 𝑛)

• polynomial multiplication of two 𝑛-degree polynomials
‣ 𝑂(𝑛2) algorithm is trivial
‣ Karatsuba algorithm is a divide-and-conquer algorithm of

𝑂(𝑛log2 3) algorithm?

19 / 42

Other examples

• matrix multiplication of two 𝑛 × 𝑛 matrices
‣ 𝑂(𝑛3) algorithm is trivial
‣ Strassen algorithm is a divide-and-conquer algorithm of

(𝑂(𝑛log2 7))

20 / 42

For Your Exercise …

• maximum segment sum
‣ given an array 𝐴 of 𝑛 numbers, find 𝑝 and 𝑞 that maximizes

sum of 𝐴[𝑝 : 𝑞]
‣ 𝑂(𝑛2) algorithm is trivial
‣ can you come up with 𝑂(𝑛 log 𝑛) or 𝑂(𝑛) algorithm?

• inversion count
‣ given an array 𝐴 of 𝑛 numbers, count the number of (𝑖, 𝑗)

pairs for which 𝐴[𝑖] > 𝐴[𝑗]
‣ can you come up with 𝑂(𝑛 log 𝑛) algorithm?

21 / 42

Abstracting
Computation Patterns
by Functions

Common “Patterns”

e.g.,

def sum_square_pos(l):
 s = 0
 for x in l:
 if x > 0:
 s += x * x
 return s

• several common patterns in this
code
1. go over each element of an array

(for x in l)
2. do something when a condition is

met (if x > 0)
3. calculate on each element (x * x)
4. reduce them into a single value

(s)

23 / 42

Functional version (Python)

def sum_square_pos(l):
 if l == []:
 return 0
 elif l[0] > 0:
 return l[0] * l[0] + sum_square_pos(l[1:])
 else:
 return sum_square_pos(l[1:])

24 / 42

Functional version (OCaml)

let rec sum_square_pos l = match l with
 [] -> 0
 | x :: r ->
 if x > 0
 x * x + sum_square_pos r
 else
 sum_square_pos r

• The same boilerplate for every different way of:
‣ selecting elements (x > 0),
‣ calculating a value for each selected element (x * x), and
‣ reducing all values into one (+)

25 / 42

Higher-Order Functions on List (OCaml)

• List.filter 𝑝 𝑙 = list of elements 𝑥 in 𝑙 that satisfies 𝑝 𝑥
• List.map 𝑓 𝑙 = list of 𝑓 𝑥 for each 𝑥 in 𝑙
• List.fold_left 𝑟 𝑧 𝑙 = 𝑟 𝑙𝑛−1 (…(𝑟 𝑙1 (𝑟 𝑙0𝑧))))
• List.fold_right 𝑟 𝑧 𝑙 = 𝑟 𝑙0 (…(𝑟 𝑙𝑛−2 (𝑟 𝑙𝑛−1 𝑧)))
• With them and anonymous functions (fun x -> ...),

let rec sum_square_pos l =
 List.fold_left (fun x y -> x + y) 0
 (List.map (fun x -> x * x)
 (List.filter (fun x -> x > 0) l))

26 / 42

A Shorter Version

• OCaml supports:

1. “Function” versions of infix operators: (+), (<), ...
• i.e., (+) x y ≡ x + y
• ∴ (+) ≡ fun x y -> x + y

2. Partial applications. e.g.,
• for f x y = E, two parameter function, f x ≡ fun y -> E
• ∴ (<) 0 ≡ fun y -> (<) 0 y (≡ fun y -> 0 < y)

3. Pipeline operator
• x |> f ≡ f x

27 / 42

A Shorter Version

• Combined,

let sum_square_pos l =
 l |> List.filter ((<) 0)
 |> List.map (fun x -> x * x)
 |> List.fold_left (+) 0

• Note: the language you chose may or may not have similar
functions builtin (you can roll it by yourself when it doesn’t)

28 / 42

Deep Recursion, Stack
Overflow, and Tail
Recursion

Deep recursion may lead to stack overflow

• e.g., to compute sum 1 + … + 𝑛

def sum_to(n):
 if n == 0:
 return 0
 else:
 return n + sum_to(n - 1)

>>> sum_to(1000)
 ... <snip> ...
 return n + sum_to(n - 1)
 ^^^^^^^^^^^^^
 [Previous line repeated 996
more times]
RecursionError: maximum
recursion depth exceeded

30 / 42

Why does it happen?

• A function call requires space for storing variables and
intermediate values

sum_to(n)
main()

31 / 42

Why does it happen?

• A function call requires space for storing variables and
intermediate values

sum_to(n - 1)
sum_to(n)
main()

31 / 42

Why does it happen?

• A function call requires space for storing variables and
intermediate values

sum_to(n - 1)
sum_to(n)

sum_to(n - 2)

main()

31 / 42

Why does it happen?

• A function call requires space for storing variables and
intermediate values

sum_to(n - 1)
sum_to(n)

sum_to(n - 2)

... ...

sum_to(0)

main()

31 / 42

How to avoid it?

1. Use a knob to set the stack size if it easily fixes your problem
…,

2. use a “balanced” recursion if possible, like:

def sum_range(a, b):
 if a == b:
 return 0
 else:
 c = (a + 1 + b) // 2
 return a + sum_range(a + 1, c) + sum_range(c, b)

3. … or use “tail recursion”
32 / 42

What is “tail recursion”?

• Tail call : if function 𝑓 calls 𝑔, and 𝑓 does nothing after 𝑔
returns (other turn returns it), such a call to 𝑔 is said “tail call”

def f(x):
 if ...:
 return g(x) # tail call
 else:
 return g(x) + 1 # not tail call

• Tail recursion ≡ recursive call that is a tail call

33 / 42

Tail-recursive sum_to

def sum_to_tail(n, s):
 if n == 0:
 return s
 else:
 return sum_to_tail(n - 1, n + s)

def sum_to(n):
 return sum_to_tail(n, 0)

• Confirm sum_to_tail(𝑛, 𝑠) returns (1 + … + 𝑛) + 𝑠

34 / 42

Why does it have anything to do with stack overflow?

• The true reason a function call requires space is to store values
required after the call

def sum_to(n):
 if n == 0:
 return 0
 else:
 return n + sum_to(n - 1) sum_to(n) n + ...

main()

35 / 42

Why does it have anything to do with stack overflow?

• The true reason a function call requires space is to store values
required after the call

def sum_to(n):
 if n == 0:
 return 0
 else:
 return n + sum_to(n - 1)

sum_to(n - 1)
sum_to(n) n + ...

(n - 1) + ...

main()

35 / 42

Why does it have anything to do with stack overflow?

• The true reason a function call requires space is to store values
required after the call

def sum_to(n):
 if n == 0:
 return 0
 else:
 return n + sum_to(n - 1)

sum_to(n - 1)
sum_to(n)

sum_to(n - 2)

n + ...
(n - 1) + ...
(n - 2) + ...

main()

35 / 42

Why does it have anything to do with stack overflow?

• The true reason a function call requires space is to store values
required after the call

def sum_to(n):
 if n == 0:
 return 0
 else:
 return n + sum_to(n - 1)

sum_to(n - 1)
sum_to(n)

sum_to(n - 2)

... ...

sum_to(0)

n + ...
(n - 1) + ...
(n - 2) + ...

main()

35 / 42

Why does it have anything to do with stack overflow?

• But for tail calls, no space is required for computation after the
call!

def sum_to_tail(n, s):
 if n == 0:
 return s
 else:
 return sum_to_tail(n - 1,
n + s)

sum_to(n)
main()

sum_to_tail(n, 0)

36 / 42

Why does it have anything to do with stack overflow?

• But for tail calls, no space is required for computation after the
call!

def sum_to_tail(n, s):
 if n == 0:
 return s
 else:
 return sum_to_tail(n - 1,
n + s) main()

sum_to(n)
sum_to_tail(n - 1, n + 0)

36 / 42

Why does it have anything to do with stack overflow?

• But for tail calls, no space is required for computation after the
call!

def sum_to_tail(n, s):
 if n == 0:
 return s
 else:
 return sum_to_tail(n - 1,
n + s) main()

sum_to(n)
sum_to_tail(n - 2, (n - 1) + n)

36 / 42

Why does it have anything to do with stack overflow?

• But for tail calls, no space is required for computation after the
call!

def sum_to_tail(n, s):
 if n == 0:
 return s
 else:
 return sum_to_tail(n - 1,
n + s) main()

sum_to(n)
sum_to_tail(0, 1+ ... + n)

36 / 42

How to come up with a tail-recursive version?

1. there is no universal formula
2. adding an extra parameter storing “partial result” often does it

• e.g., sum_to(𝑛) → sum_to_tail(𝑛, 𝑠)
• … and slightly change the spec
• sum_to_tail(𝑛, 𝑠) = (1 + … + 𝑛) + 𝑠

3. there is a general template for converting “loop” into tail
recursion

37 / 42

Loop to tail-recursion

• following is a general template

x = x0
y = y0
while E(x, y):
 x = F(x, y)
 y = G(x, y)
return ...

⇒

let rec loop x y =
 if not (E x y) then
 ...
 else
 let x' = F x y in
 let y' = G x' y in
 loop x' y'
in
loop x0 y0

38 / 42

An example (sum_to)

• the natural for loop

s = 0
for i in range(1, n+1):
 s += i
return s

• while-loop version

i = 1
s = 0
while i <= n:
 s = s + i
 i = i + 1
return s

39 / 42

Tail recursion

i = 1
s = 0
while i <= n:
 s = s + i
 i = i + 1
return s

⇒

let rec sum_to_tail i n s =
 if i > n then
 s
 else
 sum_to_tail (i + 1) n (s + i)
in
sum_to_tail 1 n 0

40 / 42

A final remark about stack overflow

• Stack overflow is an implementation artifact (avoidable)
• In principle, we should be able to grow (stack + heap) up to

the computer memory
• Yet, stack tends to overflow much earlier than that (e.g., a few

MB, when you can use > GB for other data)
• It is actually an unnecessary constraint, imposed by a typical/

traditional memory management strategy that allocates stack
separately from heap as a contiguous memory whose
maximum size is set when a program (or a thread) is started

41 / 42

A final remark about stack overflow

• A suitable language implementation can avoid such
unnecessary overflow altogether by allocating stack more
flexibly (e.g., dynamically growing it by allocating stack
frames from heap)

• Few language implementations (e.g., Standard ML New
Jersey) do it

42 / 42

	What is Functional Programming?
	1st attempt
	2nd attempt

	It is about Recursions!
	My take
	An example
	Thinking behind the procedural version
	A "functional" version
	A (superficial) characteristics of the functional version
	The thinking behind the functional version
	Reasoning correctness ≈ induction
	The "functional way" of problem solving
	Solving problems with recurrence relation : an example
	Into a code …
	Divide-and-conquer
	A textbook example (quicksort)
	Other examples
	For Your Exercise …

	Abstracting Computation Patterns by Functions
	Common "Patterns"
	Functional version (Python)
	Functional version (OCaml)
	Higher-Order Functions on List (OCaml)
	A Shorter Version

	Deep Recursion, Stack Overflow, and Tail Recursion
	Deep recursion may lead to stack overflow
	Why does it happen?
	How to avoid it?
	What is "tail recursion"?
	Tail-recursive sum_to
	Why does it have anything to do with stack overflow?
	Why does it have anything to do with stack overflow?
	How to come up with a tail-recursive version?
	Loop to tail-recursion
	An example (sum_to)
	Tail recursion
	A final remark about stack overflow

