FH 7

1/5

Introduction

e All programming language implementations first read a
program and check its grammar
» lexical analyzer (“lexer” or “tokenizer”)
» syntax checker (“parser”)
e they are necessary not only in programming language
implementations but in many other circumstances
» web pages (HTML or XML)
» CSV, SVG, .. .files ...
» config files of software ...
e it’s an important skill to be able to make them quickly
» you’d better not process strings in an ad-hoc manner
» there are useful tools to make them (parser generators)
» it never hurts to have an experience with them

2/5

Lexer and parser

o lexer =~

>

converts a sequence of

“characters” — a sequence of
“tokens” (= words)

rejects when characters do

1] EEE %E BE 25 25 BhEE BhE iBS
not constitute a valid token a
=

EERFEIRRICERI?]

@ parser ~

>

3

converts a sequence of
“tokens” — a “sentence”

(expression, statement,

whole program, etc.)

rejects tokens that constitute

a valid sentence

3/5

How to define a token and a sentence?

e normally, we define

» tokens: by regular expression (regex)
» sentences: by context free grammar (CFG)

e there are tools that generate lexers and parsers from their
declarative descriptions (lexer/parser generators)

e ‘“practice makes perfect.” Let’s see it working

4/5

lexer /parser generators

e there are many tools for many languages

» C/C++ : lex (flex) and yacc (bison)

» OCaml : ocamllex and ocamlyacc (menhir)

» Python : a whole bunch of tools, e.g., in
https://wiki.python.org/moin/LanguageParsing and
https://tomassetti.me/parsing-in-python/

o [will give you a parser code that converts source language
into XML, which you can then read using the XML library in
the language you are using

e the parser will be written in Python using Tatsu

e details to be announced later (hopefully in a few days ...)

5/5

https://wiki.python.org/moin/LanguageParsing
https://tomassetti.me/parsing-in-python/
https://tatsu.readthedocs.io/en/stable/index.html

