
Programming Languages (4)

Memory Management Introduction

Kenjiro Taura

1 / 22

Contents

1 Introduction

2 Manual Memory Management in C/C++

3 Garbage Collection (GC) : A Brief Introduction
Basics and Terminologies
Two basic methods

Traversing GC
Reference Counting

2 / 22

Contents

1 Introduction

2 Manual Memory Management in C/C++

3 Garbage Collection (GC) : A Brief Introduction
Basics and Terminologies
Two basic methods

Traversing GC
Reference Counting

3 / 22

Memory management in programming languages

all values (integers, floating point numbers, strings, arrays,
structs, . . .) need memory to hold them

ideally, programming languages manage them on behalf of
the programmer

three approaches covered
manual C, C++

garbage collection
traversing

Python, Java, Julia, Go, OCaml, etc.
reference counting

Rust ownership Rust

4 / 22

Memory Management Quiz

take the quiz via any of the following
direct link
go menti.com and enter code 4574 1905

use this QR Code

5 / 22

https://www.menti.com/alup9foppey7
https://menti.com

Illustration (Q2)

def foo():
 m = node("Mimura")
 o = node("Ohtake")
 o.friend = m
 return o

node("Ohtake") node("Mimura")

friend

returned

6 / 22

Illustration (Q3)

def foo():
 m = node("Mimura")
 o = node("Ohtake")
 m.friend = o
 return o

node("Ohtake") node("Mimura")

friend

returned

7 / 22

Contents

1 Introduction

2 Manual Memory Management in C/C++

3 Garbage Collection (GC) : A Brief Introduction
Basics and Terminologies
Two basic methods

Traversing GC
Reference Counting

8 / 22

Memory allocation in C/C++

1 Global variables/arrays

2 Local variables/arrays

3 Heap

�
1 int g; int ga[10];

2 int foo() {

3 int l; int la[10];

4 int * a = &g;

5 int * b = ga;

6 int * c = &l;

7 int * d = la;

8 int * e = malloc(sizeof(int));

9 }

lifetime
starts ends

global when the program starts when program ends
local when a block starts when a block ends
heap malloc, new free, delete

note: the following discussion calls all of them objects

9 / 22

What could go wrong in manual memory

management (e.g., C/C++)?

heap-allocated (i.e., new/malloc’ed) memory must be
delete/freed at the right spot

▶ premature free = using it after delete/free → memory
corruption

▶ memory leak = not delete/freeing no-longer-used memory
→ (eventually) out of memory�

1 node * foo() {

2 node * m = new node("Mimura");

3 node * o = new node("Ohtake");

4 return o;

5 }

10 / 22

What could go wrong in manual memory

management (e.g., C/C++)?

stack-allocated memory are automatically reclaimed when it
goes out of scope

▶ using it afterwards ≡ premature delete�
1 node * foo() {

2 node m = node("Mimura");

3 node o = node("Ohtake");

4 return &o;

5 }�
1 node * foo() {

2 node m = node("Mimura");

3 node * o = new node("Ohtake");

4 o->frien = &m;

5 return o;

6 }

11 / 22

Tools to make C/C++ memory management safer

valgrind (memory checker)
▶ detect memory-related errors (use after free, memory leak,

out of bound accesses, etc.)

Boehm garbage collection library for C/C++
▶ automatically garbage-collect memory blocks allocated by

malloc/new

12 / 22

Contents

1 Introduction

2 Manual Memory Management in C/C++

3 Garbage Collection (GC) : A Brief Introduction
Basics and Terminologies
Two basic methods

Traversing GC
Reference Counting

13 / 22

Garbage Collection (GC)

the fundamental problem of manual memory management is
the mismatch between the actual “lifetime” of objects and
“the period in which they are accessed”

▶ you may access an object after its lifetime
▶ you may not free an object despite you no longer access it

⇒ Garbage collection (GC)
▶ keep objects alive if they could ever be accessed in future

and reclaim otherwise
▶ the system automatically does that
▶ ⇒ eliminate memory leak and corruption

the question: how does the system know which objects may be
accessed in future?

14 / 22

Garbage Collection (GC)

the fundamental problem of manual memory management is
the mismatch between the actual “lifetime” of objects and
“the period in which they are accessed”

▶ you may access an object after its lifetime
▶ you may not free an object despite you no longer access it

⇒ Garbage collection (GC)
▶ keep objects alive if they could ever be accessed in future

and reclaim otherwise
▶ the system automatically does that
▶ ⇒ eliminate memory leak and corruption

the question: how does the system know which objects may be
accessed in future?

14 / 22

Garbage Collection (GC)

the fundamental problem of manual memory management is
the mismatch between the actual “lifetime” of objects and
“the period in which they are accessed”

▶ you may access an object after its lifetime
▶ you may not free an object despite you no longer access it

⇒ Garbage collection (GC)
▶ keep objects alive if they could ever be accessed in future

and reclaim otherwise
▶ the system automatically does that
▶ ⇒ eliminate memory leak and corruption

the question: how does the system know which objects may be
accessed in future?

14 / 22

Objects that may {ever/never} be accessed

the precise judgment is undecidable

(at the start of line 2) “the object
pointed to by p will ever be
accessed” ⇐⇒ “f(x) will
terminate and return 0” → you
need to be able to solve the halting
problem. . .

�
1 int main() {

2 if (f(x) == 0) {

3 printf("%d\n", p->f->x);

4 }

5 }

→ conservatively estimate objects that may be accessed in
future

▶ NEVER reclaim those that are accessed
▶ OK not to reclaim those that are in fact never accessed

in the above example, OK to retain objects pointed to by p

when the line 2 is about to start

15 / 22

Objects that “may be” accessed

global variables

local variables of active function calls (calls that have started but
have not finished)

objects reachable from them by traversing pointers

�
1 int * s, * t;

2 void h() { ... }

3 void g() {

4 ...

5 h();

6 ... = p->x ... }

7 void f() {

8 ...

9 g()

10 ... = q->y ... }

11 int main() {

12 ...

13 f()

14 ... = r->z ... }

main :

f :

g :

h :

p

r

q

active function calls

global variables

s
t

16 / 22

Objects that “may be” accessed

global variables

local variables of active function calls (calls that have started but
have not finished)

objects reachable from them by traversing pointers�
1 int * s, * t;

2 void h() { ... }

3 void g() {

4 ...

5 h();

6 ... = p->x ... }

7 void f() {

8 ...

9 g()

10 ... = q->y ... }

11 int main() {

12 ...

13 f()

14 ... = r->z ... }

main :

f :

g :

h :
x

p

r

q
y

z
active function calls

global variables

s
t

16 / 22

The basic workings (and terminologies) of GC

an object: the unit of automatic memory allocation/release
(malloc in C; objects in Java; etc.)

the root: objects accessible without traversing pointers, such
as global variables and local variables of active function calls
reachable objects: objects reachable from the root by
traversing pointers
live / dead objects: objects that {may be / never be}
accessed in future
garbage: dead objects
collector: the program (or the thread/process) doing GC
mutator: the user program (vs. collector). very GC-centric
terminology, viewing the user program as someone simply
“mutating” the graph of objects

17 / 22

The basic workings (and terminologies) of GC

an object: the unit of automatic memory allocation/release
(malloc in C; objects in Java; etc.)
the root: objects accessible without traversing pointers, such
as global variables and local variables of active function calls

reachable objects: objects reachable from the root by
traversing pointers
live / dead objects: objects that {may be / never be}
accessed in future
garbage: dead objects
collector: the program (or the thread/process) doing GC
mutator: the user program (vs. collector). very GC-centric
terminology, viewing the user program as someone simply
“mutating” the graph of objects

17 / 22

The basic workings (and terminologies) of GC

an object: the unit of automatic memory allocation/release
(malloc in C; objects in Java; etc.)
the root: objects accessible without traversing pointers, such
as global variables and local variables of active function calls
reachable objects: objects reachable from the root by
traversing pointers

live / dead objects: objects that {may be / never be}
accessed in future
garbage: dead objects
collector: the program (or the thread/process) doing GC
mutator: the user program (vs. collector). very GC-centric
terminology, viewing the user program as someone simply
“mutating” the graph of objects

17 / 22

The basic workings (and terminologies) of GC

an object: the unit of automatic memory allocation/release
(malloc in C; objects in Java; etc.)
the root: objects accessible without traversing pointers, such
as global variables and local variables of active function calls
reachable objects: objects reachable from the root by
traversing pointers
live / dead objects: objects that {may be / never be}
accessed in future

garbage: dead objects
collector: the program (or the thread/process) doing GC
mutator: the user program (vs. collector). very GC-centric
terminology, viewing the user program as someone simply
“mutating” the graph of objects

17 / 22

The basic workings (and terminologies) of GC

an object: the unit of automatic memory allocation/release
(malloc in C; objects in Java; etc.)
the root: objects accessible without traversing pointers, such
as global variables and local variables of active function calls
reachable objects: objects reachable from the root by
traversing pointers
live / dead objects: objects that {may be / never be}
accessed in future
garbage: dead objects

collector: the program (or the thread/process) doing GC
mutator: the user program (vs. collector). very GC-centric
terminology, viewing the user program as someone simply
“mutating” the graph of objects

17 / 22

The basic workings (and terminologies) of GC

an object: the unit of automatic memory allocation/release
(malloc in C; objects in Java; etc.)
the root: objects accessible without traversing pointers, such
as global variables and local variables of active function calls
reachable objects: objects reachable from the root by
traversing pointers
live / dead objects: objects that {may be / never be}
accessed in future
garbage: dead objects
collector: the program (or the thread/process) doing GC

mutator: the user program (vs. collector). very GC-centric
terminology, viewing the user program as someone simply
“mutating” the graph of objects

17 / 22

The basic workings (and terminologies) of GC

an object: the unit of automatic memory allocation/release
(malloc in C; objects in Java; etc.)
the root: objects accessible without traversing pointers, such
as global variables and local variables of active function calls
reachable objects: objects reachable from the root by
traversing pointers
live / dead objects: objects that {may be / never be}
accessed in future
garbage: dead objects
collector: the program (or the thread/process) doing GC
mutator: the user program (vs. collector). very GC-centric
terminology, viewing the user program as someone simply
“mutating” the graph of objects

17 / 22

The basic workings (and terminologies) of GC

an object: the unit of automatic memory allocation/release
(malloc in C; objects in Java; etc.)
the root: objects accessible without traversing pointers, such
as global variables and local variables of active function calls
reachable objects: objects reachable from the root by
traversing pointers
live / dead objects: objects that {may be / never be}
accessed in future
garbage: dead objects
collector: the program (or the thread/process) doing GC
mutator: the user program (vs. collector). very GC-centric
terminology, viewing the user program as someone simply
“mutating” the graph of objects

the basic principle of GC:
objects unreachable from the root are dead

17 / 22

The two major GC methods

traversing GC:
▶ simply traverse pointers from the root, to find (or visit)

objects reachable from the root
▶ reclaim objects not visited
▶ two basic traversing methods

⋆ mark&sweep GC
⋆ copying GC

reference counting GC (or RC):
▶ during execution, maintain the number of pointers (reference

count) pointing to each object
▶ reclaim an object when its reference count drops to zero
▶ note: an object’s reference count is zero → it’s unreachable

from the root

remark: “GC” sometimes narrowly refers to traversing GC

18 / 22

How traversing GC works

traverse pointers from the root
once all pointers have been traversed, objects that have not
been visited are garbage
the difference between mark&sweep and copying is covered
later

Root

19 / 22

How traversing GC works

traverse pointers from the root
once all pointers have been traversed, objects that have not
been visited are garbage
the difference between mark&sweep and copying is covered
later

Root

19 / 22

How traversing GC works

traverse pointers from the root
once all pointers have been traversed, objects that have not
been visited are garbage
the difference between mark&sweep and copying is covered
later

Root

19 / 22

How traversing GC works

traverse pointers from the root
once all pointers have been traversed, objects that have not
been visited are garbage
the difference between mark&sweep and copying is covered
later

Root

19 / 22

How traversing GC works

traverse pointers from the root
once all pointers have been traversed, objects that have not
been visited are garbage
the difference between mark&sweep and copying is covered
later

Root

19 / 22

How traversing GC works

traverse pointers from the root
once all pointers have been traversed, objects that have not
been visited are garbage
the difference between mark&sweep and copying is covered
later

Root

19 / 22

How reference counting works

each object has a reference count (RC)
update RCs during execution; e.g., upon p = q; →

▶ the RC of the object p points to -= 1
▶ the RC of the object q points to += 1

reclaim an object when its RC drops to zero → RCs of
objects pointed to by the now reclaimed object decrease

ルート

1

1

1

1

1

1
1

1

1

1
1

2

2

0

20 / 22

How reference counting works

each object has a reference count (RC)
update RCs during execution; e.g., upon p = q; →

▶ the RC of the object p points to -= 1
▶ the RC of the object q points to += 1

reclaim an object when its RC drops to zero → RCs of
objects pointed to by the now reclaimed object decrease

ルート

1

1

1

1

0

0
1

1

1

1
1

2

2

20 / 22

How reference counting works

each object has a reference count (RC)
update RCs during execution; e.g., upon p = q; →

▶ the RC of the object p points to -= 1
▶ the RC of the object q points to += 1

reclaim an object when its RC drops to zero → RCs of
objects pointed to by the now reclaimed object decrease

ルート

1

1

1

1

0

1

1

1
1

2

1

20 / 22

How reference counting works

each object has a reference count (RC)
update RCs during execution; e.g., upon p = q; →

▶ the RC of the object p points to -= 1
▶ the RC of the object q points to += 1

reclaim an object when its RC drops to zero → RCs of
objects pointed to by the now reclaimed object decrease

ルート

1

1

1

1

1

1

1
1

1

1

20 / 22

How reference counting works

each object has a reference count (RC)
update RCs during execution; e.g., upon p = q; →

▶ the RC of the object p points to -= 1
▶ the RC of the object q points to += 1

reclaim an object when its RC drops to zero → RCs of
objects pointed to by the now reclaimed object decrease

ルート

1

1

1

1

1

1

1
1

1

1

unreachable,yet
cannot be reclaimed

20 / 22

When an RC changes

a pointer is updated p = q; p->f = q; etc.
a function gets called�

1 int main() {

2 object * q = ...;

3 f(q);

4 }

a variable goes out of scope or a function returns�
1 f(object * p) {

2 ...

3 {

4 object * r = ...;

5

6 } /* RC of r should decrease */

7 ...

8 return ...; /* RC of p should decrease */

9 }

etc. any point pointer variables get copied / become no
longer used

21 / 22

GC will be covered more deeply in later weeks

22 / 22

	Introduction
	Manual Memory Management in C/C++
	Garbage Collection (GC) : A Brief Introduction
	Basics and Terminologies
	Two basic methods

