
Programming Lanaugages (2)

Parametric Polymorphism (aka Generic

Types/Functions)

Kenjiro Taura

1 / 4



Motivation

want to write

▶ a function that sorts arrays of various types (e.g., ints,
floats, strings, structs, . . . )

▶ a function that extracts elements from a list satisfying
p(x)

▶ containers including stacks, queues, trees, graphs,
hashtables, etc. of various types, . . .

▶ variety of graph algorithms (breadth-first search,
depth-first search, connected components, partitioning,
etc.) that can/should work regardless of the exact data
type of each node

▶ . . .

without duplicating code for each underlying type
2 / 4



A trivial example (generic function)

write a function
f(a) = a[0]

in your language (an element of an array, let’s say)
Questions:

▶ do you have to specify the type of a?

▶ if so, how you can say “a must be an array but whose
element can be any type”

▶ if not, can it automatically apply to any array?
▶ does it type-check statically (i.e., what if you pass

something not an array)?

3 / 4



So that you don’t get bogged down . . .

things are conceptually straightforward, pains are around
spelling out types; just master the syntax

▶ a type of functions taking an integer and returning a
float
▶ Go : func (int64) float64
▶ Julia :
▶ OCaml : int -> float
▶ Rust : fn (i64) -> f64

▶ a type of typical containers, such as array/slice/vector
of ints, list of floats, etc.

▶ for any type, satisfying an interface/trait, this function
takes a parameter of type (array of T ) and returns a
value of type (T )

4 / 4


