
Programming Lanaugages (2)

Object-Oriented Programming Basics

Kenjiro Taura

1 / 15



Classes and objects

▶ a class ≈ a data type definition + functions (methods)
for it

▶ an object is a data instance created from a class
definition�

1 # define a class named rect

2 class rect:

3 def __init__(self, x, y, width, height):

4 self.x = x

5 self.y = y

6 self.width = width

7 self.height = height

8

9 r = rect(10,20,30,40) # create an instance (or an object) of rect

2 / 15



Methods

▶ ≈ functions
▶ unlike ordinary functions, a method of the same name

can be defined for multiple classes (i.e., implemented
differently)�

1 class rect:

2 ...

3 # define a method named area

4 def area(self):

5 return self.width * self.height

6

7 class ellipse:

8 ...

9 # define another method named area

10 def area(self):

11 return self.radius * self.radius * math.pi

12

3 / 15



Dynamic dispatch

▶ when you call a method, which method gets called
among many implementations is determined by the
class argument(s) belong to�

1 # shapes may have both rect and ellipse instances

2 for s in shapes:

3 ... s.area() ...

4 / 15



Language design points

�
1 # shapes may have both rect and ellipse instances

2 for s in shapes:

3 ... s.area() ...

▶ in a code like the above, a variable s may take a value
of different classes (types) over time (polymorphism)

▶ for languages that require type declarations, how to
declare/specify the type of s or shapes?

▶ does Go/Julia/OCaml/Rust require type declarations?

5 / 15



Language design points

�
1 # shapes may have both rect and ellipse instances

2 for s in shapes:

3 ... s.area() ...

▶ more fundamentally, how can we guarantee, prior to
execution, that type errors (≈ application of
non-existing methods) do not happen at runtime?

▶ such property is called type safety

▶ an algorithm that checks type safety prior to execution
is often called static type checking

▶ does Go/Julia/OCaml/Rust guarantee type safety?

6 / 15



Different approaches

▶ forgo static type checking and thus type safety (e.g.,
Python, javascript, Lisp, Smalltalk, . . . )

▶ disallow polymorphism altogether and make it
(trivially) type-safe (e.g., Pascal)

▶ do some (loose) static type checking but allow
polymorphism via unsafe casts between pointers (e.g.,
C/C++)

▶ allow polymorphism yet guarantee type safety via
subtypes
▶ C is a subtype of P (C ≤ P ) ≡ a value of C can be

safely used wherever P is expected
▶ allow P ← C (assign a variable of type P a value of

type C)

7 / 15



Different approaches to subtyping

▶ subclass vs. interface
▶ a subclass that inherits, extends or derives from an

existing class to make a subtype
▶ an interface (or trait, abstract class, etc.) and a

(concrete) class that implements or conforms to it

rect circle

shape ... must have .area() method
that returns a float

interface

class class

defines .area() method rect circle

shape ... has .area() method
that returns a float

class

class class

... reuse or redefine 

.area() method

▶ nominal (explicit) vs. structural subtyping
▶ nominal : subtype relation admitted only when so

declared
▶ structural : subtype relation admitted whenever

appropriate (based on the structure)
8 / 15



How/if they guarantee type safety?

▶ following slides briefly explain how Go/Rust/OCaml
guarantee type safety

▶ type safety ≡ “no such methods” error never happens
at runtime ≡ when a program containing o.m(. . .)
passes static type check, o always has method m at
runtime

▶ recall that this is not the case for some languages
(including Python, Julia, C++, etc.)

9 / 15



A common framework

▶ we (i.e., static type checker) like to guarantee that,
▶ for any expression E whose static type is S,
▶ any value E could take at runtime can be safely put in

anywhere S is expected (≈ any such value implements
all the methods S specifies)

▶ for which we have to guarantee that, for any
assignment-like operations o = p, any value p could
take at runtime can be safely put in anywhere S is
expected

▶ we want to check it by comparing p’s static type (T )
and o’s static type (S)

▶ this is precisely what we like to capture by subtype
relationship (T ≤ S)

10 / 15



Note: assignment-like operations

▶ = any operation in which a value is stored to a
location of potentially different static type
▶ assignment to a variable/structure/array element
▶ function calls (passing values to parameters)
▶ function return (returning a value)

11 / 15



Subtype relationship

▶ T is a subtype of S (T ≤ S)

▶ ≈ any value of T can be safely put anywhere S is
expected

▶ ≈ T has all methods S has

▶ (this is not exactly correct, but suffices for now)

12 / 15



Go

▶ details on Assignability section of Go reference

▶ Q: when is a type T a subtype of another type S
(T ≤ S)?

▶ A: one of the following

1. S and T are identical type
2. S is an interface and T is a struct/interface that

implements S or a pointer to it

▶ Q: so when is T said to implement an interface S?

▶ A:
▶ T has all the methods specified in S, and
▶ each method in T has the same type as the method of

the same name in S

13 / 15

https://go.dev/ref/spec#Assignability


Go

▶ details on Assignability section of Go reference

▶ Q: when is a type T a subtype of another type S
(T ≤ S)?

▶ A: one of the following

1. S and T are identical type
2. S is an interface and T is a struct/interface that

implements S or a pointer to it

▶ Q: so when is T said to implement an interface S?

▶ A:
▶ T has all the methods specified in S, and
▶ each method in T has the same type as the method of

the same name in S

13 / 15

https://go.dev/ref/spec#Assignability


Go

▶ details on Assignability section of Go reference

▶ Q: when is a type T a subtype of another type S
(T ≤ S)?

▶ A: one of the following

1. S and T are identical type
2. S is an interface and T is a struct/interface that

implements S or a pointer to it

▶ Q: so when is T said to implement an interface S?

▶ A:
▶ T has all the methods specified in S, and
▶ each method in T has the same type as the method of

the same name in S

13 / 15

https://go.dev/ref/spec#Assignability


Go

▶ details on Assignability section of Go reference

▶ Q: when is a type T a subtype of another type S
(T ≤ S)?

▶ A: one of the following

1. S and T are identical type
2. S is an interface and T is a struct/interface that

implements S or a pointer to it

▶ Q: so when is T said to implement an interface S?

▶ A:
▶ T has all the methods specified in S, and
▶ each method in T has the same type as the method of

the same name in S

13 / 15

https://go.dev/ref/spec#Assignability


Rust

▶ Q: when is a type T a subtype of another type S
(T ≤ S)?

▶ A: one of the following

1. S and T are identical type
2. S is a reference to a trait and T is a reference to a

struct that implements S

▶ Q: so when does T implement an interface S?

▶ A:
▶ T has all the methods specified in S, and
▶ each method in T has the same type as the method of

the same name in S

14 / 15



Rust

▶ Q: when is a type T a subtype of another type S
(T ≤ S)?

▶ A: one of the following

1. S and T are identical type
2. S is a reference to a trait and T is a reference to a

struct that implements S

▶ Q: so when does T implement an interface S?

▶ A:
▶ T has all the methods specified in S, and
▶ each method in T has the same type as the method of

the same name in S

14 / 15



Rust

▶ Q: when is a type T a subtype of another type S
(T ≤ S)?

▶ A: one of the following

1. S and T are identical type
2. S is a reference to a trait and T is a reference to a

struct that implements S

▶ Q: so when does T implement an interface S?

▶ A:
▶ T has all the methods specified in S, and
▶ each method in T has the same type as the method of

the same name in S

14 / 15



Rust

▶ Q: when is a type T a subtype of another type S
(T ≤ S)?

▶ A: one of the following

1. S and T are identical type
2. S is a reference to a trait and T is a reference to a

struct that implements S

▶ Q: so when does T implement an interface S?

▶ A:
▶ T has all the methods specified in S, and
▶ each method in T has the same type as the method of

the same name in S

14 / 15



OCaml

▶ Q: when is a type T a subtype of another type S
(T ≤ S)?

▶ A: one of the following

1. S and T are identical type
2. when each of S and T is a function type (S = a→ b

and T = a′ → b′), then b′ ≤ b and a ≤ a′

3. when each of S and T is an object type
(S = <m0 : t0, . . . >, T = <m′

0 : t
′
0, . . . >), then

▶ {m0, . . .} ⊂ {m′
0, . . .} and

▶ for each mi = m′
j , t

′
j ≤ ti

15 / 15



OCaml

▶ Q: when is a type T a subtype of another type S
(T ≤ S)?

▶ A: one of the following

1. S and T are identical type

2. when each of S and T is a function type (S = a→ b
and T = a′ → b′), then b′ ≤ b and a ≤ a′

3. when each of S and T is an object type
(S = <m0 : t0, . . . >, T = <m′

0 : t
′
0, . . . >), then

▶ {m0, . . .} ⊂ {m′
0, . . .} and

▶ for each mi = m′
j , t

′
j ≤ ti

15 / 15



OCaml

▶ Q: when is a type T a subtype of another type S
(T ≤ S)?

▶ A: one of the following

1. S and T are identical type
2. when each of S and T is a function type (S = a→ b

and T = a′ → b′), then b′ ≤ b and a ≤ a′

3. when each of S and T is an object type
(S = <m0 : t0, . . . >, T = <m′

0 : t
′
0, . . . >), then

▶ {m0, . . .} ⊂ {m′
0, . . .} and

▶ for each mi = m′
j , t

′
j ≤ ti

15 / 15



OCaml

▶ Q: when is a type T a subtype of another type S
(T ≤ S)?

▶ A: one of the following

1. S and T are identical type
2. when each of S and T is a function type (S = a→ b

and T = a′ → b′), then b′ ≤ b and a ≤ a′

3. when each of S and T is an object type
(S = <m0 : t0, . . . >, T = <m′

0 : t
′
0, . . . >), then

▶ {m0, . . .} ⊂ {m′
0, . . .} and

▶ for each mi = m′
j , t

′
j ≤ ti

15 / 15


