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Introduction

in this part, we study

how tasks in task parallel programs are scheduled
what can we expect about its performance�

1 void ms(elem * a, elem * a_end,

2 elem * t, int dest) {

3 long n = a_end - a;

4 if (n == 1) {

5 ...

6 } else {

7 ...

8 create task(ms(a, c, t, 1 - dest));

9 ms(c, a_end, t + nh, 1 - dest);

10 wait tasks;

11 }

12 }
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Goals

understand a state-of-the-art scheduling algorithm (work
stealing scheduler)

execution time (without modeling communication):

how much time does a scheduler take to finish a
computation?
in particular, how close is it to greedy schedulers?

data access (communication) cost:

when a computation is executed in parallel by a scheduler,
how much data are transferred (caches ↔ memory, caches ↔
cache)?
in particular, how much are they worse (or better) than
those of the serial execution?
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Model of computation

assume a program performs the following operations

create task(S): create a task that performs S
wait tasks: waits for completion of tasks it has created (but
has not waited for)

e.g.,�
1 int fib(n) {

2 if (n < 2) return 1;

3 else {

4 int x, y;

5 create_task({ x = fib(n - 1); }); // share x
6 y = fib(n - 2);

7 wait_tasks;

8 return x + y;

9 }

10 }
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Model of computation

model an execution as a DAG (directed acyclic graph)

node: a sequence of instructions
edge: dependency

assume no other dependencies besides induced by
create task(S) and wait tasks

e.g., (note C1 and C2 may be subgraphs, not single nodes)

�
1 P1

2 create_task(C1);

3 P2

4 create_task(C2);

5 P3

6 wait_tasks;

7 P4

P1

P2

P3

P4

C1

C2
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Terminologies and remarks

a single node in the DAG represents a
sequence of instructions performing no
task-related operations

note that a task ̸= a single node, but = a
sequence of nodes

we say a node is ready when all its
predecessors have finished; we say a task
is ready to mean a node of it becomes
ready

P1

P2

P3

P4

C1

C2
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Work stealing scheduler

a state of the art scheduler of task parallel systems

the main ideas invented in 1990:

Mohr, Kranz, and Halstead. Lazy task creation: a technique
for increasing the granularity of parallel programs. ACM
conference on LISP and functional programming.

originally termed “Lazy Task Creation,” but essentially the
same strategy is nowadays called “work stealing”
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Work stealing scheduler: data structure

W0W1W2 Wn−1· · ·
· · ·

top

bottom

ready tasks
executing tasksready deques

each worker maintains its “ready deque” that contains ready
tasks

the top entry of each ready deque is an executing task
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Work stealing scheduler : in a nutshell

work-first; when creating a task, the created task gets
executed first (before the parent)

LIFO execution order within a worker; without work stealing,
the order of execution is as if it were a serial program

create task(S) ≡ S
wait tasks ≡ noop

FIFO stealing; it partitions tasks at points close to the root
of the task tree

it is a practical approximation of a greedy scheduler, in the
sense that any ready task can be (eventually) stolen by any
idle worker
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Work stealing scheduler in action

describing a scheduler boils down to defining actions on each
of the following events

(1) create task

(2) a worker becoming idle
(3) wait tasks

(4) a task termination

we will see them in detail
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Work stealing scheduler in action

W0 W1 W2 Wn−1· · ·

· · ·
top

bottom

(1) worker W encounters create task(S):

1 W pushes S to its deque
2 and immediately starts executing S
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Work stealing scheduler in action

W0 W1 W2 Wn−1· · ·
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top

bottom

S
P

(2) a worker with empty deque repeats work stealing:

1 picks a random worker V as the victim
2 steals the task at the bottom of V ’s deque
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Work stealing scheduler in action

W0 W1 W2 Wn−1· · ·

· · ·
top

bottom

(3) a worker W encounters wait tasks: there are two cases

1 tasks to wait for have finished ⇒ W just continues the task
2 otherwise ⇒ pops the task from its deque (the task is now

blocked, and W will start work stealing)
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Work stealing scheduler in action

W0 W1 W2 Wn−1· · ·

· · ·
top

bottom

(4) when W encounters the termination of a task T , W pops
T from its deque. there are two cases about T ’s parent P :

1 P has been blocked and now becomes ready again ⇒ W
enqueues and continues to P

2 other cases ⇒ no particular action; continues to the next
task in its deque or starts work stealing if it becomes empty
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A note about the cost of operations

W0 W1 W2 Wn−1· · ·

· · ·
top

bottom

S
P

with work stealing, the cost of a task creation is cheap, unless
its parent is stolen

1 a task gets created
2 the control jumps to the new task
3 when finished, the control returns back to the parent (as it

has not been stolen)
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A note about the cost of operations

W0 W1 W2 Wn−1· · ·

· · ·
top

bottom

S
P

much like a procedure call, except:

the parent and the child each needs a separate stack, as the
parent might be executed concurrently with the child,
as the parent might be executed without returning from the
child, the parent generally cannot assume callee save
registers are preserved

the net overhead is ≈ 100-200 instructions, from task
creation to termination
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What you must remember when using work

stealing systems

when using (good) work stealing scheduler, don’t try to
match the number of tasks to the number of processors

bad idea 1: create ≈ P tasks when you have P processors
bad idea 2 (task pooling): keep exactly P tasks all the time
and let each grab work

they are effective with OS-managed threads or processes but
not with work stealing schedulers

remember: keep the granularity of a task above a constant
factor of task creation overhead (so the relative overhead is a
sufficiently small constant. e.g., 2%)

good idea: make the granularity ≥ 5000 cycles
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Analyzing execution time of work stealing

we analyze execution time of work stealing scheduler in terms
of T1 (total work) and T∞ (critical path)

Blumofe et al. Scheduling multithreaded computations by work

stealing Journal of the ACM 46(5). 1999.

due to the random choices of victims, the upper bound is
necessarily probabilistic (e.g., TP ≤ · · · with a probability ≥ · · · )

for mathematical simplicity, we are satisfied with a result
about average (expected) execution time
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Analyzing execution time of work stealing

the main result: with P processors,

E(TP ) ≤
T1

P
+ aT∞,

with c a small constant reflecting the cost of a work steal

remember the greedy scheduler theorem?

TP ≤ T1

P
+ T∞
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Recap : DAG model

recall the DAG model of
computation

T1: total work (= execution time
by a single processor)

T∞: critical path (= execution
time by an arbitrarily many
processors)

TP : execution time by P
processors

T∞

two obvious lower bounds of execution time of any scheduler:

TP ≥ T1

P
and TP ≥ T∞

or equivalently,

TP ≥ max

(
T1

P
, T∞

)
22 / 51



Recap : greedy scheduler

greedy scheduler: “a worker is never idle, as long as any
ready task is left”

ready nodes

the greedy scheduler theorem: any greedy scheduler achieves
the following upper bound

TP ≤ T1

P
+ T∞

considering both T1

P
and T∞ are lower bounds, this shows any

greedy scheduler is within a factor of two of optimal
23 / 51



Proof of the greedy scheduler theorem : settings

for the sake of simplifying analysis, assume all nodes take a
unit time to execute (longer nodes can be modeled by a chain
of unit-time nodes)

there are P workers

workers execute in a “lockstep” manner
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Proof of the greedy scheduler theorem : settings

ready nodes

1 2

3

4

5 6 7

in each time step, either of the following happens

(S) there are ≥ P ready tasks
⇒ each worker executes any ready task (Saturated)

(U) there are ≤ P ready tasks
⇒ each ready task is executed by any worker (Unsaturated)
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Proof of the greedy scheduler theorem

there is a path from the start node
to the end node, along which a
node is always ready (let’s call
such a path a ready path)

exercise: prove there is a ready
path

at each step, either of the following
must happen

(S) all P workers execute a node, or
(U) the ready node on the path gets

executed

terminatedready

(S) happens ≤ T1/P times and (U) ≤ T∞ times
therefore, the end node will be executed within

TP ≤ (T1/P + T∞) steps

note: you can actually prove TP ≤ (T1/P + (1−1/P )T∞) steps
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What about work stealing scheduler?

what is the difference between the genuine greedy scheduler
and work stealing scheduler?

the greedy scheduler finds ready tasks with zero delays

any practically implementable scheduler will inevitably cause
some delays, from the time a node becomes ready until the
time it gets executed

in the work stealing scheduler, the delay is the time to
randomly search other workers’ deques for ready tasks,
without knowing which deques have tasks to steal

28 / 51
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Analyzing work stealing scheduler : settings

a similar setting with greedy scheduler

all nodes take a unit time
P workers

each worker does the following in each time step

its deque is not empty ⇒ executes the node designated by
the algorithm
its deque is empty ⇒ attempts to steal a node; if it succeeds,
the node will be executed in the next step

remarks on work stealing attempts

if the chosen victim has no ready tasks (besides the one
executing), an attempt fails
when two or more workers choose the same victim, only one
can succeed in a single time

29 / 51
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The overall strategy of the proof

T1

steal attempts

P

TP

in each time step, each processor either executes a node or
attempts a steal

⇒ if we can estimate the number of steal attempts
(succeeded or not), we can estimate the execution time, as:

TP =
T1 + steal attempts

P

our goal is to estimate the number of steal attempts
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Analyzing work stealing scheduler

how many steal attempts?ready executed

similar to the proof of greedy scheduler, consider a ready
path (a path from the start node to the end node, along
which a node is always ready)

the crux is to estimate how many steal attempts are enough
to make a “progress” along the ready path
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The number of steal attempts: the key

observation

a task at the bottom of the deque will be stolen by a steal
attempt with probability 1/P

thus, on average, such a task will be stolen, on average, with
P steal attempts, and is executed in the next step
you roll a dice, and you’ll get the first after six rolls

≈ P steal attemptscreate task

we are going to extend the argument to any ready task along
a ready path, and establish an average number of steal
attempts for any ready task to get executed
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How many steal attempts to occur for any ready

task to get executed?

there are five types of edges

(A) create task → child
(B) create task → the

continuation
(C) wait task → the

continuation
(D) last node of a task → the

parent’s continuation
after the corresponding
wait

(E) non-task node → the
continuation

create task
create task

wait tasks
wait tasks

(A)
(B)

(C)
(D)
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How many steal attempts to occur for any ready

task to get executed?

the successor of type (A),
(C), (D), and (E) is
executed immediately after
the predecessor is executed.
there are no delays on edges
of these types

create task
create task

wait tasks
wait tasks

(A)
(B)

(C)
(D)
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How many steal attempts to occur for any ready

task to get executed?

only the successor of type
(B) edges may need a steal
attempt to get executed

as has been discussed, once
a task is at the bottom of a
deque, it needs ≈ P steal
attempts on average until it
gets stolen

create task
create task

wait tasks
wait tasks

(A)
(B)

(C)
(D)
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How many steal attempts to occur for any ready

task to get executed?

note that a successor of a
type (B) edge (continuation
of a task creation) is not
necessarily at the bottom of
a deque

e.g., y cannot be stolen until
x has been stolen

create task
create task

wait tasks
wait tasks

(A)
(B)

(C)
(D)

x
y
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How many steal attempts to occur for any ready

task to get executed?

stealing such a task requires
an accordingly many steal
attempts

e.g., stealing y requires 2P
attempts on average (P to
steal x and another P to
steal y)

create task
create task

wait tasks
wait tasks

(A)
(B)

(C)
(D)

x
y
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When a task becomes stealable?

in general, in order for the continuation
of a create task (n) to be stolen,
continuations of all create tasks along
the path from the start node to n must
be stolen

create task

create task

a
re
a
d
y
p
a
th

create task
create task

n
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Summary of the proof

Now we have all ingredients to finish the proof

the average number of steal attempts to finish the ready path

≈ P × the length of the ready path

≤ PT∞

therefore,

average of Tp ≤
T1 + PT∞

P
=

T1

P
+ T∞
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Extensions

we assumed a steal attempt takes a single time step, but it
can be generalized to a setting where a steal attempt takes a
time steps,

E(TP ) ≤
T1

P
+ aT∞

we can also probabilistically bound the execution time

the basis is the probability that a critical node takes cP steal
attempts to be executed is ≤ e−c

∵
(
1− 1

P

)cP

≤ e−c

based on this we bound the probability that a path of length
l takes ClP steal attempts, for a large enough constant C
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Analyzing cache misses of work stealing

we like to know the amount of data transfers between a
processor’s cache and { main memory, other caches }, under
a task parallel scheduler

in particular, we like to understand how much can it be worse
(or better) than its serial execution

memory
controller

hardware thread

(virtual core, CPU)
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An analysis methodology of serial computation

we have learned how to analyze
data transfer between the cache
and main memory, in single
processor machines

the key was to identify
“cache-fitting” subcomputations
(working set size ≤ C words); and

a cache-fitting subcomputation
induces ≤ C words data transfers

capacity C

capacity ∞

cache

main memory

≤ C≤ C≤ C
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Minor remarks (data transfer vs. cache misses)

we hereafter use “a single cache miss” to mean “a single data
transfer from/to a cache”

in real machines, some data transfers do not induce to cache
misses due to prefetches

we say “cache misses” for simplicity
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What’s different in parallel execution?

the argument that “cache misses by a
cache-fitting subcomputation ≤ C” no
longer holds in parallel execution

consider two subcomputations A and B�
1 create_task({ A });

2 B

assume A and B together fit in the
cache
even so, if A and B are executed on
different processors, originally a cache
hit in B may miss

A B

≤ C
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What’s different in parallel execution?

so a parallel execution might increase cache misses

but how much?
The data locality of work stealing. SPAA ’00 Proceedings of the twelfth

annual ACM symposium on Parallel algorithms and architectures.
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Problem settings

P processors (≡ P workers)
caches are private to each processor (no shared caches)
consider only a single-level cache, with the capacity of C
words
LRU replacement: i.e., a cache holds most recently accessed
C distinct words

capacity of each C

capacity ∞

caches

main memory
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The key observation

we have learned the work stealing
scheduler tends to preserve much of the
serial execution order

⇒ extra cache misses are caused by work
stealings

a work stealing essentially brings a
subcomputation to a processor with
unknown cache states

A B

?????
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The key questions

key question 1: how many extra misses can occur when a
subcomputation moves to an unknown cache states?

executed instructions (identical)
initial cache states (different)

hit miss

key question 2: how many times work stealings happen? (we
know an answer)
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Roadmap

(1) bound the number of extra cache misses that occurs each
time a node is drifted (i.e., executed in a different order with
the serial execution)

(2) we know an upper bound on the number of steals

(3) from (2), bound the number of drifted nodes

combine (1) and (3) to derive an upper bound on the total
number of extra cache misses
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Extra misses per drifted node

when caches are LRU, the two cache states converge to an
identical state, after no more than C cache misses occur in
either cache

initial cache states (different)

≤ C transfers (misses)

≤ C tran
sfer

s (m
isse

s)

this is because the cache is LRU (holds most recently
accessed distinct C words)

∴ extra cache misses for each drifted node ≤ C
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A bound on the drifted nodes

let v a node in the DAG and u
the node that would
immediately precedes v in the
serial execution

we say v is drifted when u and v
are not executed consecutively
on the same processor

work stealing

drifted

would immediately precede a
drifted node in the serial order

without a detailed proof, we note:

the number of drifted nodes in the work stealing scheduler
≤ 2× the number of steals
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The main result

the average number of work stealings ≈ PT∞

⇒ the average number of drifted nodes ≈ 2PT∞

⇒ the average number of extra cache misses ≤ 2CPT∞

average execution time

TP ≤ T1

P
+ 2mCT∞,

where m is the cost of a single cache miss
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Summary

the basics of work stealing scheduler

work-first (preserve serial execution order)
steal tasks from near the root

average execution time (without cost of communication)

TP ≤ T1

P
+ T∞

with the cost of communication

TP ≤ T1

P
+ 2mCT∞

where mC essentially represents the time to fill the cache
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