
SIMD Programming

Kenjiro Taura

1 / 57

Contents

1 SIMD Instructions

2 SIMD programming alternatives
Auto loop vectorization
OpenMP SIMD Directives
Vector Types
Vector intrinsics

3 Vectorizing loops compilers fail to vectorize
Loops with branches
Loops with non-contiguous memory access
Loops having another loop inside

2 / 57

Contents

1 SIMD Instructions

2 SIMD programming alternatives
Auto loop vectorization
OpenMP SIMD Directives
Vector Types
Vector intrinsics

3 Vectorizing loops compilers fail to vectorize
Loops with branches
Loops with non-contiguous memory access
Loops having another loop inside

3 / 57

SIMD : basic concepts

SIMD : single instruction multiple data

a SIMD register (or a vector register) can hold many values
(2 - 16 values or more) of a single type

a SIMD instruction is an instruction that can apply
(typically the same) operation on all or some values on a
SIMD register(s)

each value in a SIMD register is called a SIMD lane or simply
a lane

they are indispensable tools for CPUs to get performance

A SIMD register

lane

...

4 / 57

Evolving Intel instruction set

Recent processors increasingly rely on SIMD as an energy
efficient way to boost peak FLOPS

Microarchitecture ISA throughput vector max SP flops/cycle
(per clock) width (SP) /core

Nehalem SSE 1 add + 1 mul 4 8
Sandy Bridge AVX 1 add + 1 mul 8 16
Haswell AVX2 2 fmas 8 32
Ice Lake AVX-512 2 fmas 16 64

ISA : Instruction Set Architecture

vector width : the number of single precision (SP) operands

fma : fused multiply-add instruction

e.g., Peak FLOPS of a machine having 2 × Intel Xeon Gold
6130 (2.10GHz, 32 cores) = 8.6 TFLOPS

no SIMD? → can tap at most 1/16 of SP peak performance
on machines having AVX-512

5 / 57

Intel SIMD instructions at a glance

Some example AVX-512F (a subset of AVX-512) instructions

operation syntax C-like expression
multiply vmulps %zmm0,%zmm1,%zmm2 zmm2 = zmm1 * zmm0

add vaddps %zmm0,%zmm1,%zmm2 zmm2 = zmm1 + zmm0

fmadd vfmadd132ps %zmm0,%zmm1,%zmm2 zmm2 = zmm0*zmm2+zmm1

load vmovups 256(%rax),%zmm0 zmm0 = *(rax+256)

store vmovups %zmm0,256(%rax) *(rax+256) = zmm0

zmm0 . . . zmm31 are 512 bit registers; each can hold

16 single-precision (float of C; 32 bits) or
8 double-precision (double of C; 64 bits)
floating point numbers

XXXps stands for packed single precision

6 / 57

xmm, ymm and zmm registers

ISA and available registers
ISA registers

SSE xmm0, . . . xmm15
AVX {x,y}mm0, . . . {x,y}mm15
AVX-512 {x,y,z}mm0, . . . {x,y,z}mm31

registers and their widths (vector widths)
register names register width (bits)

xmmi 128
ymmi 256
zmmi 512

xmmi, ymmi and zmmi are aliased

xmm13
ymm13

zmm13

0127128255256511

7 / 57

Intel SIMD instructions at a glance

look at register names (x/y/z) and the last two characters of
a mnemonic (p/s and s/d) to know what an instruction
operates on

operands vector ISA
/scalar?

vmulss %xmm0,%xmm1,%xmm2 1 SPs scalar SSE
vmulsd %xmm0,%xmm1,%xmm2 1 DPs scalar SSE
vmulps %xmm0,%xmm1,%xmm2 4 SPs vector SSE
vmulpd %xmm0,%xmm1,%xmm2 2 DPs vector SSE
vmulps %ymm0,%ymm1,%ymm2 8 SPs vector AVX
vmulpd %ymm0,%ymm1,%ymm2 4 DPs vector AVX
vmulps %zmm0,%zmm1,%zmm2 16 SPs vector AVX-512
vmulpd %zmm0,%zmm1,%zmm2 8 DPs vector AVX-512

. . . ss : scalar single precision

. . . sd : scalar double precision

. . . ps : packed single precision

. . . pd : packed double precision
8 / 57

Applications/limitations of SIMD

SIMD is good at parallelizing computations doing almost
exactly the same series of instructions on contiguous data

⇒ generally, main targets are simple loops whose index
values can be easily identified�

1 for (i = 0; i < n; i++) {

2 S(i);
3 }

⇒�
1 for (i = 0; i + L <= n; i += L) {

2 S(i : i+ L);
3 }

4 for (; i < n; i++) { /∗ remainder iterations ∗/
5 S(i);
6 }

L is the SIMD width

9 / 57

Contents

1 SIMD Instructions

2 SIMD programming alternatives
Auto loop vectorization
OpenMP SIMD Directives
Vector Types
Vector intrinsics

3 Vectorizing loops compilers fail to vectorize
Loops with branches
Loops with non-contiguous memory access
Loops having another loop inside

10 / 57

Several ways to use SIMD

auto vectorization

loop vectorization
basic block vectorization

language extensions/directives for SIMD

SIMD directives for loops (OpenMP 4.0/OpenACC)
SIMD-enabled functions (OpenMP 4.0/OpenACC)
array languages (Cilk Plus)
specially designed languages

vector types

GCC vector extensions
Boost.SIMD

intrinsics

assembly programming

11 / 57

Contents

1 SIMD Instructions

2 SIMD programming alternatives
Auto loop vectorization
OpenMP SIMD Directives
Vector Types
Vector intrinsics

3 Vectorizing loops compilers fail to vectorize
Loops with branches
Loops with non-contiguous memory access
Loops having another loop inside

12 / 57

Auto loop vectorization

write scalar loops and hope the compiler does the job

e.g.,�
1 void axpy_auto(float a, float * x, float c, long m) {

2 for (long j = 0; j < m; j++) {

3 x[j] = a * x[j] + c;

4 }

5 }

compile and run�
1 $ clang -o simd_auto -mavx512f -mfma -O3 simd_auto.c

-mavx512f -mfma say “should use AVX-512F and FMA
instructions” (better to be explicit for the time being)

-O3 increases the optimization level (so the compiler should
work hard to vectorize it)

read the notebook about options of other compilers (NVIDIA
and GCC)

13 / 57

How to know if the compiler vectorized it?

there are options useful to know whether a loop is
successfully vectorized and if not, why not

report options
Clang -R{pass,pass-missed}=loop-vectorize
NVIDIA -M{info,neginfo}=vect
GCC -fopt-info-vec-{optimized,missed}

but don’t hesitate to dive into assembly code

make -S option your friend
a trick: enclose loops with inline assembler comments to
easily locate assembly code for the loop�

1 asm volatile ("# xxxxxx loop begins");

2 for (i = 0; i < n; i++) {

3 ... /∗ hope to be vectorized ∗/
4 }

5 asm volatile ("# xxxxxx loop ends");

14 / 57

Contents

1 SIMD Instructions

2 SIMD programming alternatives
Auto loop vectorization
OpenMP SIMD Directives
Vector Types
Vector intrinsics

3 Vectorizing loops compilers fail to vectorize
Loops with branches
Loops with non-contiguous memory access
Loops having another loop inside

15 / 57

OpenMP SIMD constructs

simd pragma

directive to vectorize for loops
syntax restrictions similar to omp for pragma apply

declare simd pragma

instructs the compiler to generate vectorized versions of a
function
with it, loops with function calls can be vectorized

16 / 57

simd pragma

basic syntax (similar to omp for):�
1 #pragma omp simd clauses

2 for (i = ...; i < ...; i += ...)

3 S

clauses

aligned(var,var,. . . :align)
uniform(var,var,. . .) says variables are loop invariant
linear(var,var,. . . :stride) says variables have the specified
stride between consecutive iterations

17 / 57

simd pragma

�
1 void axpy_omp(float a, float * x, float c, long m) {

2 #pragma omp simd

3 for (long j = 0; j < m; j++) {

4 x[j] = a * x[j] + c;

5 }

6 }

note: there are no points in using omp simd here, when auto
vectorization does the job

in general, omp simd declares “you don’t mind that the
vectorized version is not the same as non-vectorized version”

18 / 57

simd pragma to vectorize programs explicitly

computing an inner product:�
1 void inner_omp(float * x, float * y, long m) {

2 float c = 0;

3 #pragma omp simd reduction(c:+)

4 for (long j = 0; j < m; j++) {

5 c += x[j] * y[j];

6 }

7 }

note that the above loop is unlikely to be auto-vectorized,
due to dependency through c

19 / 57

declare simd pragma

when given before a function definition, vectorizes a function
body

when given before a function declaration, tells the compiler a
vectorized version of the function is available

basic syntax (similar to omp for):�
1 #pragma omp declare simd clauses

2 function definition or declaration

clauses

those for simd pragma
notinbranch

inbranch

20 / 57

Reasons that a vectorization fails

potential aliasing makes auto vectorization
difficult/impossible

complex control flows make vectorization impossible or less
profitable

non-contiguous data accesses make vectorization impossible
or less profitable

giving hints to the compiler sometimes (not always) ad-
dresses the problem

21 / 57

Aliasing and auto vectorization

“auto” vectorizer succeeds only when the compiler can
guarantee a vectorized version produces an identical result
with a non-vectorized version

vectorization of loops operating on two or more arrays is
often invalid if they point to be the same array�

1 for (i = 0; i < m; i++) {

2 y[i] = a * x[i] + c;

3 }

what if, say, &y[i] = &x[i+1]?

N.B., good compilers generate code that first checks
x[i:i+L] and y[i:i+L] overlap

if you know they don’t overlap, you can make that explicit

restrict keyword, introduced by C99, does just that

22 / 57

restrict keyword

annotate parameters of pointer type with restrict, if you
know they never point to the same data�

1 void axpy_auto(float a, float * restrict x, float c,

2 float * restrict y, long m) {

3 for (long j = 0; j < m; j++) {

4 y[j] = a * x[j] + c;

5 }

6 }

you need to specify -std=gnu99 (C99 standard)�
1 $ gcc -march=native -O3 -S a.c -std=gnu99 -fopt-info-vec-optimized

2 ...

3 a.c:5: note: LOOP VECTORIZED.

4 a.c:1: note: vectorized 1 loops in function.

5 ...

23 / 57

Control flows within an iteration — conditionals

a conditional execution (e.g., if statement) within an iteration
requires a statement to be executed only for a part of SIMD
lanes�

1 void loop_if(float a, float * restrict x, float b,

2 float * restrict y, long n) {

3 #pragma omp simd

4 for (long i = 0; i < n; i++) {

5 if (x[i] < 0.0) {

6 y[i] = a * x[i] + b;

7 }

8 }

9 }

AVX-512 supports predicated execution (execution mask) for
that

24 / 57

Control flows within an iteration — nested loops

a nested loop within an iteration causes a similar problem
with conditional executions�

1 void loop_loop(float a, float * restrict x, float b,

2 float * restrict y, long n) {

3 #pragma omp simd

4 for (long i = 0; i < n; i++) {

5 y[i] = x[i];

6 for (long j = 0; j < end; j++) {

7 y[i] = a * y[i] + b;

8 }

9 }

10 }

if end depends on i (SIMD lanes), it requires a predicated
execution

25 / 57

Control flows within an iteration — function calls

if an iteration has an unknown (not inlined) function call,
almost no chance that the loop can be vectorized

the function body would have to be executed by scalar
instructions anyways�

1 void loop_fun(float a, float * restrict x, float b,

2 float * restrict y, long n) {

3 #pragma omp simd

4 for (long i = 0; i < n; i++) {

5 f(a, x, b, y, i);

6 }

7 }

you can declare that f has a vectorized version with #pragma

omp declare simd (with such a definition, of course)�
1 #pragma omp declare simd uniform(a, x, b, y) linear(i:1) notinbranch

2 void f(float a, float * restrict x, float b, float * restrict y, long i);

26 / 57

Non-contiguous data accesses

ordinary vector load/store instructions access a contiguous
addresses�

1 vmovups (a),%zmm0

loads zmm0 with the contiguous 64 bytes from address a

→ they can be used only when iterations next to each other
access addresses next to each other

27 / 57

Non-contiguous data accesses

that is, they cannot be used for�
1 void loop_stride(float a, float * restrict x, float b,

2 float * restrict y, long n) {

3 #pragma omp simd

4 for (long i = 0; i < n; i++) {

5 y[i] = a * x[2 * i] + b;

6 }

7 }

let alone�
1 void loop_random(float a, float * restrict x, float b,

2 float * restrict y, long n) {

3 #pragma omp simd

4 for (long i = 0; i < n; i++) {

5 y[i] = a * x[i * i] + b; // or x[idx[i]]

6 }

7 }

AVX-512 supports gather instructions for such data accesses

28 / 57

Non-contiguous stores

what about store�
1 void loop_random_store(float a, float * restrict x, long * idx, float b,

2 float * restrict y, long n) {

3 #pragma omp simd

4 for (long i = 0; i < n; i++) {

5 y[idx[i]] += a * x[i] + b;

6 }

7 }

AVX-512 supports scatter instructions for such data accesses

it is your responsibility to guarantee idx[i:i+L] do not
point to the same element

29 / 57

High level vectorization: summary and takeaway

CPUs (especially recent ones) have necessary tools

arithmetic → vector arithmetic instructions
load → vector load and gather instructions
store → vector store and scatter instructions
if and loops → predicated executions

generally, the compiler is behind CPUs; whether the compiler
is able to use them is another story

become a friend of compiler reports and assembly (-S)

30 / 57

Contents

1 SIMD Instructions

2 SIMD programming alternatives
Auto loop vectorization
OpenMP SIMD Directives
Vector Types
Vector intrinsics

3 Vectorizing loops compilers fail to vectorize
Loops with branches
Loops with non-contiguous memory access
Loops having another loop inside

31 / 57

Vector types

many compilers extend C by allowing you to define a type
that explicitly represents a vector of values�

1 typedef float floatv attribute ((vector size(64)));

you can use familiar arithmetic expressoins on vector types�
1 floatv x, y, z;

2 z += x * y;

Clang/NVIDIA/GCC allow you to mix scalars and vectors�
1 float a, b;

2 floatv x, y;

3 y = a * x + b;

you can combine them with intrinsics I’ll get to later
for reasons I don’t get into, a better definition is�

1 typedef float floatv attribute ((vector size(64),

2 may alias ,

3 aligned(sizeof(float))));

32 / 57

An example using vector extension

scalar code�
1 for (long i = 0; i < n; i++) {

2 y[i] = a * x[i] + b;

3 }

pseudo code (assume L | n (L divides n))�
1 for (long i = 0; i < n; i += L) {

2 y[i:i+L] = a * x[i:i+L] + b;

3 }

a function or macro (V) implementing x[i:i+L]�
1 /∗ take the address, cast it to (floatv ∗) and deref it ∗/
2 #define V(lv) (*((floatv*)&(lv)))

it is then�
1 for (long i = 0; i < n; i += L) {

2 V(y[i]) = a * V(x[i]) + b;

3 }

33 / 57

Dealing with remainder iterations

when L ̸ | n, run remainders after the vectorized version�
1 long i;

2 for (i = 0; i + L <= n; i += L) {

3 V(y[i]) = a * V(x[i]) + b;

4 }

5 for (; i < n; i++) {

6 y[i] = a * x[i] + b;

7 }

manually doing this is tedious . . .

make n a multiple of L when the problem allows it (otherwise
do the tedious work)

34 / 57

Make a vector value from scalar value(s)

you typically make a vector value from an array of scalars�
1 float * a = ...;

2 floatv v = *((*floatv)&a[i]);

a macro/function like the following makes the life better�
1 floatv& V(float& lv) { return *((floatv*)(&lv)); } // C++
2 #define V(lv) (*((floatv*)&(lv))) // C

with which we can write�
1 float * a = ...;

2 floatv v = V(a[i]);

35 / 57

. . . and vice versa

you typically store a vector value to an array of scalars�
1 float * a = ...;

2 floatv v = ...;

3 V(a[i]) = v;

and get individual scalars from the array
you can access a particular lane of a vector directly, as if a
vector is a C array. e.g.,�

1 floatv v;

2 float s = v[3];

but a CPU generally lacks instructions to access a lane
designated by a value not known at the compile time. e.g.,�

1 floatv v; int i = ...;

2 float s = v[i];

it might be essentially doing the former each time you access
an element, so might be very inefficient

36 / 57

Contents

1 SIMD Instructions

2 SIMD programming alternatives
Auto loop vectorization
OpenMP SIMD Directives
Vector Types
Vector intrinsics

3 Vectorizing loops compilers fail to vectorize
Loops with branches
Loops with non-contiguous memory access
Loops having another loop inside

37 / 57

Vector intrinsics

processor/platform-specific functions and types

on x86 processors, put this in your code�
1 #include <x86intrin.h>

and you get

a set of available vector types
a lot of functions operating on vector types

bookmark “Intel Intrinsics Guide” (https://software.
intel.com/sites/landingpage/IntrinsicsGuide/) when
using intrinsics

38 / 57

https://software.intel.com/sites/landingpage/IntrinsicsGuide/
https://software.intel.com/sites/landingpage/IntrinsicsGuide/

Vector types + intrinsics

vectorizing a loop is largely about converting�
1 for (i = 0; i < n; i++) {

2 S(i);
3 }

⇒�
1 for (i = 0; i + L <= n; i += L) {

2 S(i : i+ L);
3 } // + remainder code (omitted)

the combination of vector types + intrinsics gives you a
powerful way to manually vectorize code (i.e., write
S(i : i+ L)) the compiler fails to vectorize

39 / 57

When you want to use manual vectorization

whenever your compiler fails, but in general
1 a loop containing a branch ⇒ predicated execution +

value-blending
2 a loop accessing an array non-contiguously ⇒ gather +

scatter
3 a loop containing another loop ⇒

easy if all inner loops have the same trip count
follow the strategy for branches (tedious)

40 / 57

Vector intrinsics

vector types:

m512 (512 bit vector) ≈ float × 16
m512d (512 bit vector) ≈ double × 8
m512i (512 bit vector) ≈ long × 8

there are no int × 16
similar types for 256/128 bit values (m256, m256d,

m256i, m128, m128d and m128i

functions operating on vector types:

mm512 xxx (512 bit),
mm256 xxx (256 bit),
mm xxx (128 bit),
. . .

each function almost directly maps to a single assembly
instruction

41 / 57

Convenient intrinsics to make a vector value from

scalar value(s)

make a uniform vector�
1 floatv v = _mm512_set1_ps(f); // { f, f, ..., f }

make an arbitrary vector�
1 floatv v = _mm512_set_ps(f0, f1, f2, ..., f15);

42 / 57

Contents

1 SIMD Instructions

2 SIMD programming alternatives
Auto loop vectorization
OpenMP SIMD Directives
Vector Types
Vector intrinsics

3 Vectorizing loops compilers fail to vectorize
Loops with branches
Loops with non-contiguous memory access
Loops having another loop inside

43 / 57

Contents

1 SIMD Instructions

2 SIMD programming alternatives
Auto loop vectorization
OpenMP SIMD Directives
Vector Types
Vector intrinsics

3 Vectorizing loops compilers fail to vectorize
Loops with branches
Loops with non-contiguous memory access
Loops having another loop inside

44 / 57

Predicated instructions

SIMD instructions that take a vector of boolean values
(mask) that specifies lanes for which the instruction is
executed

results on other lanes are taken from another SIMD register
(or set zero)

e.g., an ordinary SIMD add instruction (intrinsics)

m512 mm512 add ps(m512 a, m512 b)
≡ [a[i] + b[i] | i ∈ 0..L]

predicated versions

m512 mm512 maskz add ps(mmask16 k, a, b)
≡ [(k[i] ? a[i] + b[i] : 0) | i ∈ 0..L]
m512 mm512 mask add ps(m512 c, k, a, b)

≡ [(k[i] ? a[i] + b[i] : c[i]) | i ∈ 0..L]

45 / 57

Generating a mask

compare all values of two vectors (with <)
mmask16 k = mm512 cmp ps mask(a, b, CMP LT OS)

≡ [u[i] < v[i] | i ∈ 0..L]

you get a 16 bit mask that can be used for predicated
execution

search intrinsics guide for symbols to compare in other ways

46 / 57

A template to vectorize loops containing branches

a loop having a branch�
1 for (i = 0; i < n; i++) {

2 if (C(i)) {

3 T (i)
4 } else {

5 E(i)
6 } }

⇒�
1 for (i = 0; i + L <= n; i += L) {

2 k = C(i : i+ L)
3 if (any(k)) {

4 T (i : i+ L) predicated on k
5 }

6 if (any(~k)) {

7 E(i : i+ L) predicated on ~k
8 } }

note: values used after the original if statement are made by
blending results from both branches (see next slide)

47 / 57

Blending values

there are instructions specifically for blending two vectors.
e.g., m512 mm512 mask blend ps(k, a, b)
≡ [(k[i] ? a[i] : b[i]) | i ∈ i..L]

recall that predicated instructions already have a provision
for it. e.g.,
m512 mm512 mask add ps(m512 c, k, a, b) ≡
mm512 mask blend ps(k, a+ b, c)

48 / 57

Example

scalar version�
1 for (i = 0; i < n; i++) {

2 if (i % 2 == 0) {

3 y[i] = x[i] + 1;

4 } else {

5 y[i] = x[i] * 2;

6 }

7 }

⇒ pseudo code (assume L | n)�
1 for (i = 0; i < n; i += L) {

2 __mmask16 k = (i:i+L % 2 == 0);

3 t = x[i:i+L] + 1;

4 y[i:i+L] = blend(~k, x[i:i+L] * 2 : t);

5 }

49 / 57

Example

⇒ actual code�
1 for (i = 0; i < n; i += L) {

2 __m512i z = _mm512_set1_epi64(0)

3 __mmask16 k = _mm512_cmp_epi64_mask(linear(i) & 1L, z, _MM_CMPINT_EQ)

4 __m512i t = V(x[i]) + 1;

5 V(y[i]) = _mm512_mask_mul_ps(t, ~k, V(x[i]), 2);

6 }

linear(i) is a function (not shown) to generate a vector {
i, i+1, ..., i+L-1 }
there are C++ tricks (operator overloading) that make this
code less ugly

50 / 57

Contents

1 SIMD Instructions

2 SIMD programming alternatives
Auto loop vectorization
OpenMP SIMD Directives
Vector Types
Vector intrinsics

3 Vectorizing loops compilers fail to vectorize
Loops with branches
Loops with non-contiguous memory access
Loops having another loop inside

51 / 57

Gather

an instruction that can get [a[i0], a[i1], · · · , a[iL−1]] as a
vector value

m512 mm512 i32gather ps(m512i I, void* a, int s)
takes 16 32-bit indices I and scale s. that is,
≡ [f(a[I[i] ∗ s]) | i ∈ 0..L] where f(p) gets the value at p
as a float value (≡ ∗((float∗)&p))

similar versions for different index/value widths

64 bit indices to gather 8 double precision (64 bit) values
m512d mm512 i64gather pd

64 bit indices to gather 8 single precision (32 bit) values
m256 mm512 i64gather ps

32 bit indices to gather 8 double precision (64 bit) values
m512d mm512 i32gather pd

there are predicated versions as well
(mm512 mask ixxgather ps/pd)

52 / 57

Scatter

an instruction that can assignments
a[i0] = x0; a[i1] = x1; · · · ; a[iL−1] = xL−1;

similar name conventions to gather

32 bit indices, to get 32 bit values mm512 i32scatter ps

64 bit indices, to get 64 bit values mm512 i64scatter pd

64 bit indices, to get 32 bit values: mm512 i64scatter ps

32 bit indices, to get 64 bit values: mm512 i32scatter pd

you guessed it. there are masked versions
(mm512 mask ixxscatter ps/pd)

53 / 57

Contents

1 SIMD Instructions

2 SIMD programming alternatives
Auto loop vectorization
OpenMP SIMD Directives
Vector Types
Vector intrinsics

3 Vectorizing loops compilers fail to vectorize
Loops with branches
Loops with non-contiguous memory access
Loops having another loop inside

54 / 57

Loops having another loop inside

consider how to vectorize the outer loop�
1 for (i = 0; i < m; i++) {

2 for (j = 0; j < limit; j++) {

3 B(i)
4 }

5 }

if the trip count of the inner loop is the same across lanes
(i.e., limit does not depend on i), then there is no particular
difficulty (the compiler nevertheless often fails to vectorize it)

more difficult is when inner loop has different trip counts
depending on i

55 / 57

Loops having another loop inside

a general template of scalar code�
1 for (i = 0; i < m; i++) {

2 while (C(i)) {

3 B(i)
4 }

5 }

⇒�
1 for (i = 0; i < m; i += L) {

2 while (any(C(i : i+ L))) {

3 B(i : i+ L) predicated on C
4 }

5 }

56 / 57

Vector types and intrinsics : summary

template�
1 for (i = 0; i < n; i++) {

2 S(i)
3 }

→�
1 for (i = 0; i < n; i += L) {

2 S(i : i+ L)
3 }

convert every expression into its vector version, which
contains what the original expression would have for the L
consecutive iterations

use masks to handle conditional execution and nested loops
with variable trip counts

vectorizing SpMV is challenging but possible with this
approach

57 / 57

	SIMD Instructions
	SIMD programming alternatives
	Auto loop vectorization
	OpenMP SIMD Directives
	Vector Types
	Vector intrinsics

	Vectorizing loops compilers fail to vectorize
	Loops with branches
	Loops with non-contiguous memory access
	Loops having another loop inside

