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What you need to know to get a nearly peak
FLOPS

@ so you now know how to use multicores and SIMD
instructions

e they are two key elements to get a nearly peak FLOPS

e the last key element: Instruction Level Parallelism (ILP) of
superscalar processors
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An endeavor to nearly peak FLOPS

e measure how fast we can iterate the following loop (a similar
experiment we did on GPU)

1 floatv a, x, c;

2 for (i = 0; i < nj; i++) {
3 X =a*x + c;

4 }

e the code performs L x n FMAs and almost nothing else (L =
the number of lanes in a single SIMD variable)
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Assembly

e the loop is unrolled eight

times
.LBB3_8:
vfmadd213pd %zmm1, %zmm0O, %zmm2 ) Why does it take > 3 Cycles
vfmadd213pd %zmml, %zmmO, %zmm2 d inele fmadd?
vfmadd213pd %zmml, %zmmO, %zmm2 to do a single 1ma :

vfmadd213pd %zmml, %zmmO, %zmm2
vfmadd213pd %zmml, %zmmO, %zmm2
vfmadd213pd %zmml, %zmmO, %zmm2
vfmadd213pd %zmml, %zmmO, %zmm2
vfmadd213pd %zmml, %zmmO, %zmm2
addq $-8, Yrax

jne .LBB3_8
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Latency and throughput

e our core (Ice Lake) can execute two fmadd instructions every

cycle

@ but it does not mean the result of vfmadd at a line below is

© % N D G L =

~
~

available in the next cycle for vfmadd at the next line

.LBB3_8:

vifmadd213pd %zmm1l,
vfmadd213pd %zmmi,
vfmadd213pd %zmmi,
vfmadd213pd Y%zmm1,
vfmadd213pd %zmmi,
vfmadd213pd %zmmil,
vfmadd213pd %zmmi,
vfmadd213pd %zmmil,
addq $-8, %rax
jne .LBB3_8

%zmmO ,
%zmmO ,
%zmmO ,
%zmmO ,
%zmmO ,
%zmmO ,
%zmmO ,
%zmmO ,

%zmm2
%zmm2
%zmm2
%zmm2
%zmm2
%zmm2
%zmm2
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%zmmO ,
%zmmO ,
%zmmO ,
%zmmO ,
%zmmO ,
%zmmO ,
%zmmO ,
%zmmO ,

%zmm2
%zmm2
%zmm2
%zmm2
%zmm2
%zmm2
%zmm2
%zmm2

e what you need to know:

e “two vfmadd instructions every cycle” refers to the

throughput

o each instruction has a specific latency (> 1 cycle)
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Latencies/throughput

instruction Haswell | Broadwell | Skylake
fp add 3 3 4/2
fp mul 5 3 4/2
fp fmadd 5 5 4/2
typical integer ops 1 1 1/>2
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Valuable resources for detailed analyses

e Software optimization resources by Agner
o The microarchitecture of Intel, AMD and VIA CPUs: An
optimization guide for assembly programmers and compiler
makers
o Instruction tables: Lists of instruction latencies, throughputs
and micro-operation breakdowns for Intel, AMD and VIA
CPUs

o Intel Intrinsics Guide
e Intel Architecture Code Analyzer (later)
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http://www.agner.org/optimize/
https://software.intel.com/sites/landingpage/IntrinsicsGuide/
https://software.intel.com/en-us/articles/intel-architecture-code-analyzer

Our code in light of latencies

@ in our code, a vfmadd uses the result of the immediately
preceding vfmadd

e there are dependencies between them

e that was obvious from the source code too

1 .LBB3_8:

2 vfmadd213pd Y%zmml, %zmmO, %zmm2

:43 vfmadd213pd %zmml, %zmmO, %zmm2 ; [for GG =0: i <n; i+s) {
Tt P = + .

5 vfmadd213pd Y%zmml, %zmmO, %zmm2 ; } rTarxtc

6 vfmadd213pd Y%zmmi, %zmmO, %zmm2

7 addq $-8, %rax

8 | jme .LBB3_8

Conclusion:

the loop can’t run faster than 4 cycles/iteration

vfmaddps vfmaddps vfmaddps vfmaddps

eSS

zmm?2 zmm2 zmm2 zmm2 zmm2
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CPU clocks vs. reference clocks

e CPU changes clock frequency depending on the load (DVES)

e reference clock runs at the same frequency (it is always
proportional to the absolute time)

e an instruction takes a specified number of CPU clocks, not
reference clocks

e the CPU clock is more predictable and thus more convenient
for a precise reasoning of the code

vfmaddps vfmaddps vfmaddps vfmaddps

e e HdH i+ cPU dlock
—— A reference lock
—— - absolute time
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e we expect the following to finish in the same number of cycles
as the original one, despite it performs twice as many flops

1 |for (i = 0; i < n; i++) {
2 x0 = a * x0 + c;

3 x1 =a *x x1 + c;

412
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Increase the number of chains further .. .

e we expect to reach peak FLOPS with > 2/(1/4) = 8 chains

(i.e., nv > 8)
1 | long axpy_simd_c( ... ) {
2 for (long i = 0; i < m; i++) {
3 for (long j = 0; j < nv; j++) {
4 X[i] = a * X[j] + c;
5 }r}
N e Ju e e
) x X X
n n n N N}
S N N N N
X X X X )
[ [ [ T Toe -
g/ 0 o
N N N N
Sz S S e %
g
[ n n n

e note: the above reasoning assumes a compiler’s smartness

e in particular, X[j] = a * X[j] + c is compiled into an
FMA instruction on registers without load/store instructions
(i.e., each of X[0], ..., X[7] gets assigned a register)
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Results

a compile-time constant number of variables

8 T T T T i(ﬁ* - 64
7L latency 156
throughput
= 6 )( n 48_2
S5 ¥ 1402
~ / O
2 4+ LR - 32}
1+ / 18
0 | | | | | | | 0
0 2 4 6 8 10 12 14 16
variables
1 | for (i = 0; i < n; i++) {
2 x0 a *x x0 + b;
8 x1 a *x x1 + by
4
511}

chains | clocks/iter | flops/clock
1 4.010 7.979
2 4.003 15.987
3 4.013 23.916
4 4.043 31.653
5 4.043 39.568
6 4.047 47.439
7 4.157 53.878
8 5.044 50.751
9 4.621 62.314
10 5.057 63.270
11 5.549 63.427
12 6.076 63.194
13 6.573 63.283
14 7.022 63.794
15 7.552 63.558
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Superscalar processors

how modern aggressive superscalar processors work:
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Superscalar processors

how modern aggressive superscalar processors work:
e instruction decoding goes much ahead of actual executions
e the actual execution of an instruction does not happen until,
and happens as soon as, its operands and execution resources
are ready (out of order execution)
@ = as a crude approximation, performance is constrained by

e latency: imposed by dependencies between instructions
e throughput: imposed by execution resources of the processor
(e.g., two fmadds/cycle)

19 /41



A general theory of workload performance on
aggressive superscalar machines

e dependency constrains how fast a computation can proceed,
even if there are infinite number of execution resources

@ increase the number of independent computations and you
increase throughput, until it hits the limit of execution
resources

a compile-time constant number of variables

T T T Tty 2 |
7 szl;pughpu}t, - 56
6 X 148
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variables
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A more general understanding about throughput
limits
e what you need to know:

all instructions have their own throughput limits (just like
FMA), due to execution resources

e some examples of recent Intel CPUs

instruction Broadwell | Skylake SP | Ice Lake SP
fp add/mul/fmadd 2 2 2
load 2 2 2
store 1 1 2
typical integer ops 4 4 4

e e.g., a loop containing 10 load instructions takes > 10/2 =5
cycless/iteration

o different but similar instructions may use the same execution
resource so may be subject of the same limitation

@ a more general reasoning = dispatch ports
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Dispatch ports

@ cach instruction
(u-operation) is
dispatched to a specific
execution unit through a
dispatch port

@ each port can take only a
single operation per cycle

e this determines the
throughput of all
instructions that go to
that port

e with destination ports of
mstructions, one can
calculate the throughput
limit of a given loop

Front End

32KiB 8-Way.

i

16 Bytesicycle.
Branch

ST
Kem-g gizIs
aysed z1

~§
L1 Data Cache #
. 48KiB 12-Way
dispatch ports iy S (|

Chipwikia - Sunny cove architecture, CC BY-SA 4.0,

https://commons.wikimedia.org/w/index.php?curid= 122552727(}64 1


https://en.wikipedia.org/wiki/Sunny_Cove_(microarchitecture)
https://commons.wikimedia.org/w/index.php?curid=122557706

LLVM Machine Code Analyzer (11vm-mca)

@ a great tool to analyze the throughput (and latency to some
extent) limit
e given a code sequence, it shows
e latency and
e dispatch port
of each instruction and, based on them calculates the number
of cycles per iteration,
e under some simplifying assumptions
e the given sequence repeats many times
e no cache misses (!)
e no dependencies through memory (load does not depend on
earlier stores)
e no branch misprediction
e = a great tool to analyze the innermost, straight sequence of
instructions without branches (basic blocks)
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How to use 11vm-mca

@ generate assembly (get program.s) by, e.g.,

1 [clang -03 -mavxb512f -mfma ... program.c -S

find the loop you want to analyze in the assembly
sandwich it by # LLVM-MCA-BEGIN and # LLVM-MCA-END

# LLVM-MCA-BEGIN
.L123

2]
o

jne .L123
# LLVM-MCA-END

D G W v~

@ run llvm-mca tool on the assembly code

1 [llvm—mca program.s
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How to use 11vm-mca

@ it shows

e latency of each instruction
e dispatch port used by each instruction

and how many instructions use each of the dispatch ports
(therefore the throughput limit of the loop)

e with --timeline option,

1 [llvm—mca --timeline program.s

it also shows when each instruction gets decoded, dispatched,
and finished (particularly instructive)
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Example

e input (assembly)

D

® N S v

10
11
12
13
14

# LLVM-MCA-BEGIN
.LBB3_8:

# xmm0 = (xmml * xmmO) + xmm2

vfmadd213sd %xmm2, %xmml,
vifmadd213sd %xmm2, %xmml,
vfmadd213sd %xmm2, %xmml,
vfmadd213sd %xmm2, %xmml,
vimadd213sd %xmm2, %xmml,
vfmadd213sd %xmm2, %xmmi,
vfmadd213sd %xmm2, %xmml,
vifmadd213sd %xmm2, %xmml,
addq $-8, rax

jne .LBB3_8

# LLVM-MCA-END

%xmm0
%xmm0
%xmm0
%xmm0
%xmm0
%xmm0
%xmm0
%xmmO
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Example

e output (dispatch port used by each instruction)

1 | Resource pressure by instruction:

2 [ [0] [11 [2] ([3] [4] .. [11] Instructioms:

3 - - 0.99 0.01 - - vfmadd213sd %xmm2, %xmml, %xmmO
4 - - - 1.00 - - vfmadd213sd %xmm2, %xmml, %xmmO
5 - - 0.99 0.01 - - vfmadd213sd %xmm2, %xmml, %xmmO
6 - - - 1.00 - - vfmadd213sd Y%xmm2, %xmml, %xmmO
7 - - 1.00 - - - vfmadd213sd %xmm2, %xmml, %xmmO
8 - - - 1.00 - - vfmadd213sd %xmm2, %xmml, %xmmO
9 - - 1.00 - - - vfmadd213sd %xmm2, %xmml, %xmmO
10 - - - 1.00 - - vfmadd213sd %xmm2, %xmml, %xmmO
11 - - - 0.01 - - addq $-8, %rax

12 - - 0.04 - - - jne .LBB3_8
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Example

e output (timeline)

1

2 vfmadd213sd %xmm2, %xmml, %xmmO
3 . vfmadd213sd %xmm2, %xmml, %xmmO
4 ====ceeelR. . . vfmadd213sd %xmm2, %xmmi, %xmmO
5 addq $-8, %rax

6 jne .LBB3_8

7 vfmadd213sd %xmm2, %xmml, %xmmO
8 ER vfmadd213sd %xmm2, %xmml, %xmmO
9 ER vimadd213sd %xmm2, %xmml, %xmmO
10
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Developing near peak FLOPS matrix multiply

e let’s develop a (single core) matrix multiply that runs at
fairly good FLOPS on Ice Lake

@ it is a great application of the concept you have just learned

C=A«B+C

N K

M C += A * B K
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K B
K N
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A few convenient assumptions

e we add assumptions that M, N, and K are multiple of
certain numbers along the way, (don’t worry about
“remainder” rows/columns)

@ we assume matrix sizes are conveniently small (don’t worry
about memory access cost, which is actually a significant
factor to design matrix multiply for larger matrices)

e multiplication of larger (and unknown size) matrices can be
built on top of this
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Step 1: Baseline code

$ mm_base 8 32 192

M=8, N=32, K=192

16

: 8 x 192 (1d=192) 6144 bytes
1 192 x 32 (1d=32) 24576 bytes
: 8 x 32 (1d=32) 1024 bytes
total = 31744 bytes

repeat : 20346 times

perform 1000046592 fmas ... done
2844287815 clocks

0.351598 fmas/cycle

IS

QW=

W RN DY ;N W

~
~

1 |for (i = 0; i < M; i++)

2 for (j = 0; j < N; j++)

3 for (k = 0; k < K; k++)

4 C(i,j) += A(i,k) * B(k,j);

e it runs at &~ 2.8 clocks / innermost loop

32/41



Step 1: analysis

e latency limit : latency of FMA

e the reason why it’s slightly smaller than 4 is there are some
overlaps between different elements of C'
e if youset M = N =1 and K large, it’s almost exactly 4

e throughput limit : not important

e achieved performance : 1000046592 fmas / 2844287815 cycles
~ 0.4 fmas/cycle
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Step 2: Vectorization

$ mm_simd 8 32 192

M=28, N=32, K=192

: 16

: 8 x 192 (1d=192) 6144 bytes
: 192 x 32 (1d=32) 24576 bytes
: 8 x 32 (1d=32) 1024 bytes
total = 31744 bytes

repeat : 20346 times

perform 1000046592 fmas ... done
180175475 clocks

5.550404 fmas/cycle

IS

QW=

4;
o D w

~
S ©

S

for (i = 0; i < M; i++)
for (j = 0; j < N; j +=1L)
for (k = 0; k < K; k++)
C(i,j:j+L) += A(i,k) * B(k,j:j+L);

FSEEEV S

e assumption: N is a multiple of SIMD lanes (L)
e it still runs at ~ 2.8 clocks / innermost iteration
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Step 2: analysis

@ the speed is still limited by latency

e the only difference is that each iteration now performs 16
fmas (as opposed to an fma)

e achieved throughput :

1000046592 fmas/180175475 cycles ~ 5.5 fmas/cycle
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Step 3: increase parallelism!

$ ./mm_simd_ilp 8 32 192
M=8, N=32, K=192

L : 16
A
B
¢

IS

: 8 x 192 (1d=192) 6144 bytes
: 192 x 32 (1d=32) 24576 bytes
: 8 x 32 (1d=32) 1024 bytes
total = 31744 bytes
repeat : 20346 times
perform 1000046592 fmas ... done
64836630 clocks
15.424099 fmas/cycle

4;
o D w

~
S ©

S

e update bM vector elements of C' concurrently

for (i = 0; i < M; i += bM)
for (j = 0; j <N; j +=1L)
for (k = 0; k < K; k++)
for (di = 0; di < bM; di++)
C(i+di,j:j+L) += A(i+di,k) * B(k,j:j+L);

I N

o Ice Lake requires bM > 8 to reach peak FLOPS
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I N
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Step 3: analysis

1 |for (i = 0; i < M; i += bM)
K| pom 2| for (j=0; j <N; j+=L)
\ 3 for (k = 0; k < K; k++)
4 for (di = 0; di < bM; di++)
K N 5 C(i+di,j:j+L) += A(i+di,k) * B(k,j:j+L);

v

e the for loop at line 4 performs
o bM loads (broadcasts) for A(i+di,k)
o Iload for B(k,j:j+L)
o bM FMAs

e the load/broadcast throughput = 2 per cycle

e to achieve 2 FMAs/cycle, we must have

the number of broadcast < the number of FMAs
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Step 4:

Reuse an element of A

$ mm_simd_lip_4x2 8 32 192
M=8, N=32, K=192

L : 16

A : 8 x 192 (1d=192) 6144 bytes
B : 192 x 32 (1d=32) 24576 bytes
C : 8 x 32 (1d=32) 1024 bytes
total = 31744 bytes

repeat : 20346 times

perform 1000046592 fmas ... done
38635137 clocks

25.884381 fmas/cycle

e update bM’ x bN block rather than bM x 1

(SN N S

for (i = 0; i < M; i += bM’)
for (j = 0; j < N; j += bN * L)
for (k = 0; k < K; k++)
for (di = 0; di < bM’; di++)
for (dj = 0; dj < bN * L; dj += L)
C(i+di,j+dj:j+dj+L) += A(i+di,k) * B(k,j+dj:j+L);

38/ 41



Step 4: Analysis

e the for loop at line 4 performs

o bM’loads (broadcast) for A(i+di,k)
e bN loads for B(k,j:j+L)
e bM’ x bN SIMD FMAs

e the minimum requirement for it to achieve the peak FLOPS
is bBM’” x bN > 8

@ in the experiments, when we set bM’ = 8 and bN = 2, it gets
25 fmas/cycle (=~ 80% of the peak)

e we need to note that this happens only when the matrix is
small (M =8, N = 32, K = 192) and we repeat it many times

o the issue for large matrices will be the next topic
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Takeaways (1)

e peak FLOPS of many recent Intel CPUs = “execute two
fmadds every cycle” (no other combinations)
e other processors have different limits, but the basics is the
same
o cf. NVIDIA GPUs = “execute two warps (each doing fmadd)
every cycle”
@ single-core performance is not about reducing the number of
instructions
e it’s about how to increase parallelism
e CPU : SIMD x ILP
o GPU : threads, threads, threads, ...
e but the internal machinery is similar (warp ~ SIMD, ILP ~
warps in an SM)
e how they expose parallelism to the programmer is different
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Takeaways (2)

e dependent instructions incur latencies and hinder parallelism

A—0—k 00— —k—0—A >V
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