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What you need to know to get a nearly peak

FLOPS

so you now know how to use multicores and SIMD
instructions

they are two key elements to get a nearly peak FLOPS

the last key element: Instruction Level Parallelism (ILP) of
superscalar processors
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An endeavor to nearly peak FLOPS

measure how fast we can iterate the following loop (a similar
experiment we did on GPU)�

1 floatv a, x, c;

2 for (i = 0; i < n; i++) {

3 x = a * x + c;

4 }

the code performs L × n FMAs and almost nothing else (L =
the number of lanes in a single SIMD variable)
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Assembly

�
1 .LBB3_8:

2 vfmadd213pd %zmm1, %zmm0, %zmm2

3 vfmadd213pd %zmm1, %zmm0, %zmm2

4 vfmadd213pd %zmm1, %zmm0, %zmm2

5 vfmadd213pd %zmm1, %zmm0, %zmm2

6 vfmadd213pd %zmm1, %zmm0, %zmm2

7 vfmadd213pd %zmm1, %zmm0, %zmm2

8 vfmadd213pd %zmm1, %zmm0, %zmm2

9 vfmadd213pd %zmm1, %zmm0, %zmm2

10 addq $-8, %rax

11 jne .LBB3_8

the loop is unrolled eight
times

why does it take > 3 cycles
to do a single fmadd?
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Latency and throughput

our core (Ice Lake) can execute two fmadd instructions every
cycle
but it does not mean the result of vfmadd at a line below is
available in the next cycle for vfmadd at the next line�

1 .LBB3_8:

2 vfmadd213pd %zmm1, %zmm0, %zmm2

3 vfmadd213pd %zmm1, %zmm0, %zmm2

4 vfmadd213pd %zmm1, %zmm0, %zmm2

5 vfmadd213pd %zmm1, %zmm0, %zmm2

6 vfmadd213pd %zmm1, %zmm0, %zmm2

7 vfmadd213pd %zmm1, %zmm0, %zmm2

8 vfmadd213pd %zmm1, %zmm0, %zmm2

9 vfmadd213pd %zmm1, %zmm0, %zmm2

10 addq $-8, %rax

11 jne .LBB3_8

what you need to know:
“two vfmadd instructions every cycle” refers to the
throughput
each instruction has a specific latency (≥ 1 cycle)
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Latencies/throughput

instruction Haswell Broadwell Skylake
fp add 3 3 4/2
fp mul 5 3 4/2
fp fmadd 5 5 4/2
typical integer ops 1 1 1/> 2
. . . . . . . . . . . .
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Valuable resources for detailed analyses

Software optimization resources by Agner

The microarchitecture of Intel, AMD and VIA CPUs: An
optimization guide for assembly programmers and compiler
makers
Instruction tables: Lists of instruction latencies, throughputs
and micro-operation breakdowns for Intel, AMD and VIA
CPUs

Intel Intrinsics Guide

Intel Architecture Code Analyzer (later)
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Our code in light of latencies

in our code, a vfmadd uses the result of the immediately
preceding vfmadd

there are dependencies between them
that was obvious from the source code too�

1 .LBB3_8:

2 vfmadd213pd %zmm1, %zmm0, %zmm2

3 vfmadd213pd %zmm1, %zmm0, %zmm2

4 ...

5 vfmadd213pd %zmm1, %zmm0, %zmm2

6 vfmadd213pd %zmm1, %zmm0, %zmm2

7 addq $-8, %rax

8 jne .LBB3_8

�
1 for (i = 0; i < n; i++) {

2 x = a * x + c;

3 }

Conclusion:
the loop can’t run faster than 4 cycles/iteration

vfmaddps

zmm2

vfmaddps vfmaddps vfmaddps

zmm2 zmm2 zmm2 zmm2
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CPU clocks vs. reference clocks

CPU changes clock frequency depending on the load (DVFS)

reference clock runs at the same frequency (it is always
proportional to the absolute time)

an instruction takes a specified number of CPU clocks, not
reference clocks

the CPU clock is more predictable and thus more convenient
for a precise reasoning of the code

reference clock

absolute time

CPU clock
vfmaddps vfmaddps vfmaddps vfmaddps
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How to overcome latencies?

increase parallelism (no other ways)!

you can’t make a serial chain of dependent computation run
faster than determined by latencies

vfmaddps

zmm2

vfmaddps vfmaddps vfmaddps

zmm2 zmm2 zmm2 zmm2

you can only increase throughput, by running multiple
independent chains

we expect the following to finish in the same number of cycles
as the original one, despite it performs twice as many flops�

1 for (i = 0; i < n; i++) {

2 x0 = a * x0 + c;

3 x1 = a * x1 + c;

4 }
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Increase the number of chains further . . .

we expect to reach peak FLOPS with ≥ 2/(1/4) = 8 chains
(i.e., nv ≥ 8)�

1 long axpy_simd_c( ... ) {

2 for (long i = 0; i < n; i++) {

3 for (long j = 0; j < nv; j++) {

4 X[j] = a * X[j] + c;

5 } } }

note: the above reasoning assumes a compiler’s smartness
in particular, X[j] = a * X[j] + c is compiled into an
FMA instruction on registers without load/store instructions
(i.e., each of X[0], ..., X[7] gets assigned a register)
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Results
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a compile-time constant number of variables

�
1 for (i = 0; i < n; i++) {

2 x0 = a * x0 + b;

3 x1 = a * x1 + b;

4 ...

5 }

chains clocks/iter flops/clock
1 4.010 7.979
2 4.003 15.987
3 4.013 23.916
4 4.043 31.653
5 4.043 39.568
6 4.047 47.439
7 4.157 53.878
8 5.044 50.751
9 4.621 62.314
10 5.057 63.270
11 5.549 63.427
12 6.076 63.194
13 6.573 63.283
14 7.022 63.794
15 7.552 63.558
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Superscalar processors

how modern aggressive superscalar processors work:

instruction decoding goes much ahead of actual executions

the actual execution of an instruction does not happen until,
and happens as soon as, its operands and execution resources
are ready (out of order execution)

⇒ as a crude approximation, performance is constrained by

latency: imposed by dependencies between instructions
throughput: imposed by execution resources of the processor
(e.g., two fmadds/cycle)
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A general theory of workload performance on

aggressive superscalar machines

dependency constrains how fast a computation can proceed,
even if there are infinite number of execution resources

increase the number of independent computations and you
increase throughput, until it hits the limit of execution
resources
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A more general understanding about throughput

limits

what you need to know:
all instructions have their own throughput limits (just like
FMA), due to execution resources

some examples of recent Intel CPUs
instruction Broadwell Skylake SP Ice Lake SP
fp add/mul/fmadd 2 2 2
load 2 2 2
store 1 1 2
typical integer ops 4 4 4
. . . . . . . . . . . .

e.g., a loop containing 10 load instructions takes ≥ 10/2 = 5
cycless/iteration

different but similar instructions may use the same execution
resource so may be subject of the same limitation

a more general reasoning ⇒ dispatch ports
21 / 41



Dispatch ports

each instruction
(µ-operation) is
dispatched to a specific
execution unit through a
dispatch port

each port can take only a
single operation per cycle

this determines the
throughput of all
instructions that go to
that port

with destination ports of
instructions, one can
calculate the throughput
limit of a given loop

dispatch ports

Chipwikia - Sunny cove architecture, CC BY-SA 4.0,

https://commons.wikimedia.org/w/index.php?curid=122557706
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LLVM Machine Code Analyzer (llvm-mca)

a great tool to analyze the throughput (and latency to some
extent) limit

given a code sequence, it shows
latency and
dispatch port

of each instruction and, based on them calculates the number
of cycles per iteration,

under some simplifying assumptions
the given sequence repeats many times
no cache misses (!)
no dependencies through memory (load does not depend on
earlier stores)
no branch misprediction

⇒ a great tool to analyze the innermost, straight sequence of
instructions without branches (basic blocks)
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How to use llvm-mca

1 generate assembly (get program.s) by, e.g.,�
1 clang -O3 -mavx512f -mfma ... program.c -S

2 find the loop you want to analyze in the assembly

3 sandwich it by # LLVM-MCA-BEGIN and # LLVM-MCA-END�
1 # LLVM-MCA-BEGIN

2 .L123

3 ...

4 ...

5 jne .L123

6 # LLVM-MCA-END

4 run llvm-mca tool on the assembly code�
1 llvm-mca program.s
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How to use llvm-mca

it shows

latency of each instruction
dispatch port used by each instruction

and how many instructions use each of the dispatch ports
(therefore the throughput limit of the loop)

with --timeline option,�
1 llvm-mca --timeline program.s

it also shows when each instruction gets decoded, dispatched,
and finished (particularly instructive)
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Example

input (assembly)�
1 # LLVM-MCA-BEGIN

2 .LBB3_8:

3 # xmm0 = (xmm1 * xmm0) + xmm2

4 vfmadd213sd %xmm2, %xmm1, %xmm0

5 vfmadd213sd %xmm2, %xmm1, %xmm0

6 vfmadd213sd %xmm2, %xmm1, %xmm0

7 vfmadd213sd %xmm2, %xmm1, %xmm0

8 vfmadd213sd %xmm2, %xmm1, %xmm0

9 vfmadd213sd %xmm2, %xmm1, %xmm0

10 vfmadd213sd %xmm2, %xmm1, %xmm0

11 vfmadd213sd %xmm2, %xmm1, %xmm0

12 addq $-8, %rax

13 jne .LBB3_8

14 # LLVM-MCA-END
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Example

output (dispatch port used by each instruction)�
1 Resource pressure by instruction:

2 [0] [1] [2] [3] [4] .. [11] Instructions:

3 - - 0.99 0.01 - - vfmadd213sd %xmm2, %xmm1, %xmm0

4 - - - 1.00 - - vfmadd213sd %xmm2, %xmm1, %xmm0

5 - - 0.99 0.01 - - vfmadd213sd %xmm2, %xmm1, %xmm0

6 - - - 1.00 - - vfmadd213sd %xmm2, %xmm1, %xmm0

7 - - 1.00 - - - vfmadd213sd %xmm2, %xmm1, %xmm0

8 - - - 1.00 - - vfmadd213sd %xmm2, %xmm1, %xmm0

9 - - 1.00 - - - vfmadd213sd %xmm2, %xmm1, %xmm0

10 - - - 1.00 - - vfmadd213sd %xmm2, %xmm1, %xmm0

11 - - - 0.01 - - addq $-8, %rax

12 - - 0.04 - - - jne .LBB3_8
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Example

output (timeline)�
1 ...

2 D=====...==eeeeER . . . . vfmadd213sd %xmm2, %xmm1, %xmm0

3 .D====...======eeeeER . . . vfmadd213sd %xmm2, %xmm1, %xmm0

4 .D====...==========eeeeER. . . vfmadd213sd %xmm2, %xmm1, %xmm0

5 .DeE--...---------------R. . . addq $-8, %rax

6 .D=eE-...---------------R. . . jne .LBB3_8

7 .D====...==============eeeeER . . vfmadd213sd %xmm2, %xmm1, %xmm0

8 .D====...==================eeeeER . vfmadd213sd %xmm2, %xmm1, %xmm0

9 . D===...======================eeeeER vfmadd213sd %xmm2, %xmm1, %xmm0

10 ...
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Developing near peak FLOPS matrix multiply

let’s develop a (single core) matrix multiply that runs at
fairly good FLOPS on Ice Lake

it is a great application of the concept you have just learned

C = A ∗B + C

+= *M

N K

K

N

C A B
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A few convenient assumptions

we add assumptions that M , N , and K are multiple of
certain numbers along the way, (don’t worry about
“remainder” rows/columns)

we assume matrix sizes are conveniently small (don’t worry
about memory access cost, which is actually a significant
factor to design matrix multiply for larger matrices)

multiplication of larger (and unknown size) matrices can be
built on top of this
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Step 1: Baseline code

j

M

N

K

i

K

�
1 $ mm_base 8 32 192

2 M = 8, N = 32, K = 192

3 L : 16

4 A : 8 x 192 (ld=192) 6144 bytes

5 B : 192 x 32 (ld=32) 24576 bytes

6 C : 8 x 32 (ld=32) 1024 bytes

7 total = 31744 bytes

8 repeat : 20346 times

9 perform 1000046592 fmas ... done

10 2844287815 clocks

11 0.351598 fmas/cycle

�
1 for (i = 0; i < M; i++)

2 for (j = 0; j < N; j++)

3 for (k = 0; k < K; k++)

4 C(i,j) += A(i,k) * B(k,j);

it runs at ≈ 2.8 clocks / innermost loop
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Step 1: analysis

latency limit : latency of FMA

the reason why it’s slightly smaller than 4 is there are some
overlaps between different elements of C
if you set M = N = 1 and K large, it’s almost exactly 4

throughput limit : not important

achieved performance : 1000046592 fmas / 2844287815 cycles
≈ 0.4 fmas/cycle
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Step 2: Vectorization

j

M

N

K

i

K

�
1 $ mm_simd 8 32 192

2 M = 8, N = 32, K = 192

3 L : 16

4 A : 8 x 192 (ld=192) 6144 bytes

5 B : 192 x 32 (ld=32) 24576 bytes

6 C : 8 x 32 (ld=32) 1024 bytes

7 total = 31744 bytes

8 repeat : 20346 times

9 perform 1000046592 fmas ... done

10 180175475 clocks

11 5.550404 fmas/cycle

�
1 for (i = 0; i < M; i++)

2 for (j = 0; j < N; j += L)

3 for (k = 0; k < K; k++)

4 C(i,j:j+L) += A(i,k) * B(k,j:j+L);

assumption: N is a multiple of SIMD lanes (L)
it still runs at ≈ 2.8 clocks / innermost iteration
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Step 2: analysis

the speed is still limited by latency

the only difference is that each iteration now performs 16
fmas (as opposed to an fma)

achieved throughput :

1000046592 fmas/180175475 cycles ≈ 5.5 fmas/cycle
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Step 3: increase parallelism!

j

i
M

NK

K

�
1 $ ./mm_simd_ilp 8 32 192

2 M = 8, N = 32, K = 192

3 L : 16

4 A : 8 x 192 (ld=192) 6144 bytes

5 B : 192 x 32 (ld=32) 24576 bytes

6 C : 8 x 32 (ld=32) 1024 bytes

7 total = 31744 bytes

8 repeat : 20346 times

9 perform 1000046592 fmas ... done

10 64836630 clocks

11 15.424099 fmas/cycle

update bM vector elements of C concurrently�
1 for (i = 0; i < M; i += bM)

2 for (j = 0; j < N; j += L)

3 for (k = 0; k < K; k++)

4 for (di = 0; di < bM; di++)

5 C(i+di,j:j+L) += A(i+di,k) * B(k,j:j+L);

Ice Lake requires bM ≥ 8 to reach peak FLOPS
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Step 3: analysis

i
M

NK

j

K

�
1 for (i = 0; i < M; i += bM)

2 for (j = 0; j < N; j += L)

3 for (k = 0; k < K; k++)

4 for (di = 0; di < bM; di++)

5 C(i+di,j:j+L) += A(i+di,k) * B(k,j:j+L);

the for loop at line 4 performs
bM loads (broadcasts) for A(i+di,k)
1 load for B(k,j:j+L)
bM FMAs

the load/broadcast throughput = 2 per cycle

to achieve 2 FMAs/cycle, we must have

the number of broadcast ≤ the number of FMAs
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Step 4: Reuse an element of A

M

N

j

K

i

K

�
1 $ mm_simd_lip_4x2 8 32 192

2 M = 8, N = 32, K = 192

3 L : 16

4 A : 8 x 192 (ld=192) 6144 bytes

5 B : 192 x 32 (ld=32) 24576 bytes

6 C : 8 x 32 (ld=32) 1024 bytes

7 total = 31744 bytes

8 repeat : 20346 times

9 perform 1000046592 fmas ... done

10 38635137 clocks

11 25.884381 fmas/cycle

12

update bM’ × bN block rather than bM × 1�
1 for (i = 0; i < M; i += bM’)

2 for (j = 0; j < N; j += bN * L)

3 for (k = 0; k < K; k++)

4 for (di = 0; di < bM’; di++)

5 for (dj = 0; dj < bN * L; dj += L)

6 C(i+di,j+dj:j+dj+L) += A(i+di,k) * B(k,j+dj:j+L);
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Step 4: Analysis

the for loop at line 4 performs

bM’ loads (broadcast) for A(i+di,k)
bN loads for B(k,j:j+L)
bM’ × bN SIMD FMAs

the minimum requirement for it to achieve the peak FLOPS
is bM’ × bN ≥ 8

in the experiments, when we set bM’ = 8 and bN = 2, it gets
25 fmas/cycle (≈ 80% of the peak)

we need to note that this happens only when the matrix is
small (M = 8, N = 32, K = 192) and we repeat it many times

the issue for large matrices will be the next topic
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Takeaways (1)

peak FLOPS of many recent Intel CPUs = “execute two
fmadds every cycle” (no other combinations)

other processors have different limits, but the basics is the
same
cf. NVIDIA GPUs = “execute two warps (each doing fmadd)
every cycle”

single-core performance is not about reducing the number of
instructions

it’s about how to increase parallelism

CPU : SIMD × ILP
GPU : threads, threads, threads, . . .
but the internal machinery is similar (warp ≈ SIMD, ILP ∼
warps in an SM)
how they expose parallelism to the programmer is different
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Takeaways (2)

dependent instructions incur latencies and hinder parallelism

independent instructions are executed in parallel, up to
throughput limits

throughput limits are determined by dispatch ports
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