
OpenMP for GPU

Kenjiro Taura

1 / 8



OpenMP for GPU

recent OpenMP supports offloading to GPU (target
directive)

official home page: http://openmp.org/

specification:
http://openmp.org/wp/openmp-specifications/

latest version is 5.0
(https://www.openmp.org/spec-html/5.0/openmp.html)

section numbers below refer to those in OpenMP spec 5.0

2 / 8

http://openmp.org/
http://openmp.org/wp/openmp-specifications/
https://www.openmp.org/spec-html/5.0/openmp.html


Compiling OpenMP programs for GPUs

LLVM (clang/clang++) : compile with -fopenmp

-fopenmp-targets=nvptx64�
1 $ clang -Wall -fopenmp -fopenmp-targets=nvptx64 program.c

you get a warning: “CUDA version is newer than the latest
supported version 11.5” and -Wunknown-cuda-version

suppresses it

NVIDIA HPC SDK (nvc/nvc++) : compile with -mp

-target-gpu�
1 $ nvc -Wall -mp -target=gpu program.c

3 / 8



Directives overview

1 move control
target : moves the execution to GPU

2 parallelize
teams and distribute

teams : creates a number of teams executing the same
statement (≈ parallel pragma)
distributed : distribute iterations of a for loop among
teams (≈ for pragma)

parallel and for
parallel : creates a number of threads executing the same
statement in a team
for : distribute iterations of a for loop among threads in a
team

think of teams + distributed another layer outside
parallel + for

3 move (or sync) data
target data : move/sync data between CPU and GPU

4 / 8



Implementation note

while not specified anywhere in the spec (and there are cases
they behave differently to below), you can think of

a team ∼ a thread block
a thread ∼ a CUDA thread

it at least helps you understand why things look so
redundant . . .

5 / 8



Frequently-used combined idioms

all combined�
1 #pragma omp target teams distribute parallel for

2 for (int i = start; i < end; i += incr) {

3 S
4 }

teams + distributed to outer loop and parallel + for to
outer loop�

1 #pragma omp target teams distribute

2 for (int i = start; i < end; i += incr) {

3 #pragma omp parallel for

4 for (int j = start’; j < end’; j += incr’) {

5 S
6 }

7 }

similar to launching a kernel doing S, but
you don’t have to adjust thread block size
the program is orthogonal to thread count

6 / 8



Data mapping

a major headache when programming in CUDA is data
management

the only “transparent” data transfer is argument passing�
1 f<<<nb,bs>>>(a, b, c, ...);

gettint the result back from GPU is already painful�
1 cudaMalloc(&r_dev, ...);

2 f<<<nb,bs>>>(a, b, c, ..., r);

3 cudaMemcpy(r, r_dev, ...);

for persistent data,

maintain two pointers to logically same data (CPU version
and GPU version)
get them synched when necessary (before and after a kernel
launche)

“data mapping” of OpenMP alleviates the pain
7 / 8



Data mapping example

�
1 #pragma target data map(to: a[b:c]) map(from: x)

2 S

send the array range a[b:c] (a[b], a[b+1], ..., a[c-1])
to GPU before S
send x from GPU after S

you can combine to: and from: into tofrom:

somewhat “declarative” way of understanding this

expressions a[i] (b ≤ i < c) become valid (“mapped”) on
GPU during S
expressions x become valid on CPU after S

note: you can specify map clauses as part of target (not
target data) directive, too

learn details with tht notebook

8 / 8


