
OpenMP

Kenjiro Taura

1 / 74

Contents

1 A Running Example: SpMV

2 parallel pragma

3 Work sharing constructs
loops (for)
scheduling
task parallelism (task and taskwait)

4 Data sharing clauses

5 SIMD constructs

2 / 74

Contents

1 A Running Example: SpMV

2 parallel pragma

3 Work sharing constructs
loops (for)
scheduling
task parallelism (task and taskwait)

4 Data sharing clauses

5 SIMD constructs

3 / 74

A running example: Sparse Matrix Vector

Multiply (SpMV)

sparse matrix : a matrix whose elements are mostly zeros
i.e. the number of non-zero elements (nnz) ≪ the number of
all elements (M ×N)

M : the number of rows
N : the number of columns

4 / 74

Sparse matrices appear everywhere

meshes in scientific simulation

Ai,j = a weight connecting nodes i and j in the mesh

graphs, which in turn appear in many applications

Ai,j = the weight of the edge i→ j (or j → i)
Web, social network, road/traffic networks, metabolic
pathways, etc.

many problems can be solved using SpMV

eigenvalues (including PageRank, graph partitioning, etc.)
partial differential equation
. . .

5 / 74

What makes “sparse” matrix different from

ordinary (dense) matrix?

the number of non-zero elements are so small that
representing it as M ×N array is too wasteful (or just
impossible)
→ use a data structure that takes memory/computation only
(or mostly) for non-zero elements (coordinate list,
compressed sparse row, etc.)

6 / 74

Coordinate list (COO)

represent a matrix as a list
of (i, j, Ai,j)’s

data format:�
1 struct coo {

2 int n_rows, n_cols, nnz;

3 /∗ nnz elements ∗/
4 struct { i, j, Aij } * elems;

5 };

SpMV (y = Ax)�
1 for (k = 0; k < A.nnz; k++) {

2 i,j,Aij = A.elems[k];

3 y[i] += Aij * x[j];

4 }

7 / 74

Compressed sparse row (CSR)

puts elements of a single row in a contiguous range
an index (number) specifies where a particular row begins in
the elems array
→ no need to have i for every single element
data format:�

1 struct coo {

2 int n_rows, n_cols, nnz;

3 struct { j, Aij } * elems; // nnz elements
4 int * row_start; // n rows elements
5 };

elems[row start[i]] · · · elems[row start[i+ 1]] are the
elements in the ith row
SpMV (y = Ax)�

1 for (i = 0; i < A.n_rows; i++) {

2 for (k = A.row_start[i]; k < A.row_start[i+1]; k++) {

3 j,Aij = A.elems[k];

4 y[i] += Aij * x[j];

5 } }
8 / 74

OpenMP

de fact standard model for programming shared memory
machines

C/C++/Fortran + directives + APIs

by #pragma in C/C++
by comments in Fortran

many free/vendor compilers, including GCC, LLVM,
NVIDIA HPC SDK

9 / 74

https://llvm.org/
https://docs.nvidia.com/hpc-sdk/index.html

OpenMP reference

official home page: http://openmp.org/

specification:
http://openmp.org/wp/openmp-specifications/

latest version is 5.0
(https://www.openmp.org/spec-html/5.0/openmp.html)

section numbers below refer to those in OpenMP spec 5.0

10 / 74

http://openmp.org/
http://openmp.org/wp/openmp-specifications/
https://www.openmp.org/spec-html/5.0/openmp.html

Compiling OpenMP programs for multicores

GCC and LLVM (clang/clang++) : compile with -fopenmp�
1 $ clang -Wall -fopenmp program.c

2 $ gcc -Wall -fopenmp program.c

NVIDIA HPC SDK (nvc/nvc++) : compile with -mp�
1 $ nvc -Wall -mp program.c

In this lecture, we use LLVM and NVIDIA HPC SDK, as
they support OpenMP for multicore, GPU offloading, and
CUDA

11 / 74

Running OpenMP programs

run the executable specifying the number of threads with
OMP NUM THREADS environment variable�

1 $ OMP NUM THREADS=1 ./a.out # use 1 thread

2 $ OMP NUM THREADS=4 ./a.out # use 4 threads

if OMP NUM THREADS is unspecified, it uses the number of
available processors visible to OS, including hyperthreading

see 2.6.1 “Determining the Number of Threads for a parallel
Region” for more details and other ways to control the
number of threads

12 / 74

https://www.openmp.org/spec-html/5.0/openmpsu35.html#x55-880002.6.1

Contents

1 A Running Example: SpMV

2 parallel pragma

3 Work sharing constructs
loops (for)
scheduling
task parallelism (task and taskwait)

4 Data sharing clauses

5 SIMD constructs

13 / 74

Two pragmas you must know first

#pragma omp parallel to
launch a team of threads
(2.6)

then #pragma omp for to
distribute iterations to
threads (2.9.2)

Note: all OpenMP pragmas have
the common format: #pragma
omp ...

for (i = 0; i < n; i++) {

}

14 / 74

https://www.openmp.org/spec-html/5.0/openmpse14.html#x54-800002.6
https://www.openmp.org/spec-html/5.0/openmpsu41.html#x64-1290002.9.2

#pragma omp parallel

basic syntax:�
1 ...

2 #pragma omp parallel

3 S
4 ...

basic semantics:

create a team of
OMP NUM THREADS threads
the current thread becomes the
master of the team
S will be executed by each
member of the team
the master thread waits for all
to finish S and continue

S S S S

15 / 74

parallel pragma example

�
1 #include <stdio.h>

2 int main() {

3 printf("hello\n");

4 #pragma omp parallel

5 printf("world\n");

6 printf("bye\n");

7 return 0;

8 }

�
1 $ OMP NUM THREADS=1 ./a.out

2 hello

3 world

4 $ OMP NUM THREADS=4 ./a.out

5 hello

6 world

7 world

8 world

9 world

10 bye

16 / 74

Remarks : what does parallel do?

you may assume an OpenMP thread ≈ OS-supported thread
(e.g., Pthread)

that is, if you write this program�
1 int main() {

2 #pragma omp parallel

3 worker();

4 }

and run it as follows,�
1 $ OMP NUM THREADS=50 ./a.out

you will get 50 OS-level threads, each doing worker()

17 / 74

How to distribute work among threads?

#pragma omp parallel creates threads, all executing the
same statement

it’s not a means to parallelize work, per se, but just a means
to create a number of similar threads

Single Program Multiple Data (SPMD) model

so how to distribute (or partition) work among them?
1 do it yourself
2 use work sharing constructs

18 / 74

Do it yourself: functions to get the number/id of

threads

omp get num threads() (3.2.2) : the number of threads in
the current team
omp get thread num() (3.2.4) : the current thread’s id (0, 1,
. . .) in the team
they are primitives with which you may partition work
yourself by whichever ways you prefer
e.g.,�

1 #pragma omp parallel

2 {

3 int t = omp_get_thread_num();

4 int nt = omp_get_num_threads();

5 /∗ divide n iterations evenly amont nt threads ∗/
6 for (i = t * n / nt; i < (t + 1) * n / nt; i++) {

7 ...

8 }

9 }

19 / 74

https://www.openmp.org/spec-html/5.0/openmpsu111.html#x148-6450003.2.2
https://www.openmp.org/spec-html/5.0/openmpsu113.html#x150-6570003.2.4

Contents

1 A Running Example: SpMV

2 parallel pragma

3 Work sharing constructs
loops (for)
scheduling
task parallelism (task and taskwait)

4 Data sharing clauses

5 SIMD constructs

20 / 74

Contents

1 A Running Example: SpMV

2 parallel pragma

3 Work sharing constructs
loops (for)
scheduling
task parallelism (task and taskwait)

4 Data sharing clauses

5 SIMD constructs

21 / 74

Work sharing constructs

in theory, parallel construct is all you need to do things in
parallel

but it’s too inconvenient

OpenMP defines ways to partition work among threads (work
sharing constructs)

for
task

22 / 74

#pragma omp for (work-sharing for)

basic syntax (2.9.2):�
1 #pragma omp for

2 for(i=...; i...; i+=...){

3 S
4 }

basic semantics:
the threads in the team
divde the iterations among
them

but how? ⇒ scheduling

for (i = 0; i < n; i++) {

}

23 / 74

https://www.openmp.org/spec-html/5.0/openmpsu41.html#x64-1290002.9.2

#pragma omp for restrictions

iterations are executed in any order may interleave

the program must not rely on the order in which they are
executed

strong syntactic restrictions apply (2.9.1); basically, the
iteration space must be easily identifiable at the beginning of
the loop

roughly, it must be of the form:�
1 #pragma omp for

2 for(i = init; i < limit; i += incr)

3 S

except < and += may be other similar operators
init, limit, and incr must be loop invariant

24 / 74

https://www.openmp.org/spec-html/5.0/openmpsu40.html#x63-1260002.9.1

Parallel SpMV for CSR using #pragma omp for

it only takes to work-share the outer for loop�
1 // assume inside #pragma omp parallel

2 ...

3 #pragma omp for

4 for (i = 0; i < A.n_rows; i++) {

5 for (k = A.row_start[i]; k < A.row_start[i+1]; k++) {

6 j,Aij = A.elems[k];

7 y[i] += Aij * x[j];

8 }

9 }

note: the inner loop (k) is executed sequentially

25 / 74

Parallel SpMV COO using #pragma omp for?

the following code does not work (why?)�
1 // assume inside #pragma omp parallel

2 ...

3 #pragma omp for

4 for (k = 0; k < A.nnz; k++) {

5 i,j,Aij = A.elems[k];

6 y[i] += Aij * x[j];

7 }

a possible remedy will be described later

26 / 74

Contents

1 A Running Example: SpMV

2 parallel pragma

3 Work sharing constructs
loops (for)
scheduling
task parallelism (task and taskwait)

4 Data sharing clauses

5 SIMD constructs

27 / 74

Scheduling (2.9.2)

schedule clause in work-sharing for loop determines how
iterations are divided among threads

There are three alternatives (static, dynamic, and guided)

28 / 74

https://www.openmp.org/spec-html/5.0/openmpsu41.html#x64-1290002.9.2

static, dynamic, and guided

schedule(static[,chunk]):
predictable round-robin

schedule(dynamic[,chunk]):
each thread repeats fetching
chunk iterations

schedule(guided[,chunk]):
threads grab many iterations
in early stages; gradually
reduce iterations to fetch at a
time

chunk specifies the minimum
granularity (iteration counts)

static

dynamic

guided

static, 3

dynamic, 2

guided, 2

29 / 74

Other scheduling options and notes

schedule(runtime) determines the schedule by
OMP SCHEDULE environment variable. e.g.,�

1 $ OMP_SCHEDULE=dynamic,2 ./a.out

schedule(auto) or no schedule clause choose an
implementation dependent default

30 / 74

Parallelizing loop nests by collapse

collapse(l) can be used to partition nested loops. e.g.,�
1 #pragma omp for collapse(2)

2 for (i = 0; i < n; i++)

3 for (j = 0; j < n; j++)

4 S

will partition n2 iterations of the doubly-nested loop

schedule clause applies to nested loops as if the nested loop
is an equivalent flat loop

restriction: the loop must be “perfectly nested” (the iteration
space must be a rectangular and no intervening statement
between different levels of the nest)

31 / 74

Visualizing schedulers

seeing is believing. let’s visualize how loops are distributed
among threads
write a simple doubly nested loop and run it under various
scheduling options�

1 #pragma omp for collapse(2) schedule(runtime)

2 for (i = 0; i < 1000; i++)

3 for (j = 0; j < 1000; j++)

4 unit_work(i, j);

load per point is systematically
skewed:

≈ 0 in the lower triangle
randomly drawn from
[100, 10000] (clocks) in the
upper triangle

load ≈ 0

load ∼ [100, 10000] clocks

32 / 74

Visualizing schedulers

static dynamic

33 / 74

Scheduling for SpMV on CSR

�
1 // assume inside #pragma omp parallel

2 ...

3 #pragma omp for schedule(???)

4 for (i = 0; i < A.n_rows; i++) {

5 for (k = A.row_start[i]; k < A.row_start[i+1]; k++) {

6 j,Aij = A.elems[k];

7 y[i] += Aij * x[j];

8 }

9 }

static? depending on the number of elements in rows, load
imbalance may be significant

dynamic/guided? load balancing will be better, but
extremely dense rows may still be an issue

the more robust strategy is to partition non-zeros, not rows

34 / 74

Contents

1 A Running Example: SpMV

2 parallel pragma

3 Work sharing constructs
loops (for)
scheduling
task parallelism (task and taskwait)

4 Data sharing clauses

5 SIMD constructs

35 / 74

Task parallelism in OpenMP

OpenMP’s initial focus was simple parallel loops

since 3.0, it supports task parallelism

but why it’s necessary?

aren’t parallel and for all we need?

36 / 74

Limitation of parallel for

what if you have a parallel
loop inside another�

1 for (...) {

2 ...

3 for (...) ...

4 }

perhaps in a function?�
1 main() {

2 for (...) {

3 ...

4 g();

5 }

6 }

7 g() {

8 for (...) ...

9 }

what about parallel
recursions?�

1 qs() {

2 if (...) { ... }

3 else {

4 qs();

5 qs();

6 }

7 }

37 / 74

parallel for can’t handle nested parallelism

OpenMP generally ignores nested
parallel pragma when enough
threads have been created by the
outer parallel pragma, for good
reasons

the fundamental limitation is its
simplistic work-sharing mechanism

tasks address these issues, by
allowing tasks to be created at
arbitrary points of execution (and
a mechanism to distribute them
across cores)

for (i = 0; i < n; i++) {

}

38 / 74

parallel for can’t handle nested parallelism

OpenMP generally ignores nested
parallel pragma when enough
threads have been created by the
outer parallel pragma, for good
reasons

the fundamental limitation is its
simplistic work-sharing mechanism

tasks address these issues, by
allowing tasks to be created at
arbitrary points of execution (and
a mechanism to distribute them
across cores)

for (i = 0; i < n; i++) {

}

38 / 74

parallel for can’t handle nested parallelism

OpenMP generally ignores nested
parallel pragma when enough
threads have been created by the
outer parallel pragma, for good
reasons

the fundamental limitation is its
simplistic work-sharing mechanism

tasks address these issues, by
allowing tasks to be created at
arbitrary points of execution (and
a mechanism to distribute them
across cores)

for (i = 0; i < n; i++) {

}

38 / 74

Task parallelism in OpenMP

syntax:

task creates a task executing S (2.10.1)�
1 #pragma omp task

2 S

taskwait waits for child tasks to finish (2.17.5)�
1 #pragma omp taskwait

39 / 74

https://www.openmp.org/spec-html/5.0/openmpsu46.html#x70-2000002.10.1
https://www.openmp.org/spec-html/5.0/openmpsu93.html#x124-4690002.17.5

OpenMP task parallelism template

don’t forget to create a
parallel region

don’t also forget to enter a
master region, which says
only the master executes
the following statement
and others “stand-by”�

1 int main() {

2 #pragma omp parallel

3 #pragma omp master

4 // or #pragma omp single

5 ms(a, a + n, t, 0);

6 }

and create tasks in the
master region�

1 void ms(a, a_end, t, dest) {

2 if (n == 1) {

3 ...

4 } else {

5 ...

6 #pragma omp task

7 ms(a, c, t, 1 - dest);

8 #pragma omp task

9 ms(c, a_end, t + nh, 1 - dest);

10 #pragma omp taskwait

11 ...

12 }

40 / 74

What are tasks good for?

the strength of tasks as opposed to for loop is its flexibility
create tasks at any point during the computation
they get distributed to cores

especially good for “nested parallelism” and “parallel
recursions (divide and conquer)”

T0

T1 T161

T2 T40

T3 T31

T4 T29

T5 T11

T6 T7

T8 T9

T10

T12 T24

T13 T14

T15 T23

T16 T20

T17

T18

T19

T21

T22

T25 T26

T27

T28

T30

T32 T38

T33 T37

T34 T35

T36

T39

T41 T77

T42 T66

T43 T62

T44

T45 T61

T46 T60

T47 T56

T48

T49 T55

T50 T54

T51 T53

T52

T57

T58

T59

T63 T65

T64

T67 T74

T68 T72

T69 T71

T70

T73

T75 T76

T78 T102

T79 T82

T80 T81 T83 T101

T84 T93

T85

T86 T87

T88 T92

T89 T90

T91

T94

T95 T96

T97

T98 T100

T99

T103 T153

T104 T122

T105 T120

T106 T111

T107 T110

T108 T109

T112 T114

T113 T115 T117

T116 T118

T119

T121

T123 T137

T124 T128

T125

T126

T127

T129 T135

T130

T131

T132 T134

T133

T136

T138 T152

T139 T143

T140

T141

T142

T144 T146

T145 T147 T150

T148 T149 T151

T154 T155

T156 T158

T157 T159 T160

T162 T184

T163 T172

T164 T166

T165 T167 T171

T168 T169

T170

T173 T175

T174 T176 T181

T177 T179

T178 T180

T182

T183

T185 T187

T186 T188 T190

T189 T191

T192

T193 T195

T194 T196 T198

T197 T199

even for loops, you may consider reformulating them into
divide-and-conquer as an alternative dynamic load-balancing
strategy

41 / 74

Visualizing task parallel schedulers

the workload is exactly the same as before�
1 #pragma omp for collapse(2) schedule(runtime)

2 for (i = 0; i < 1000; i++)

3 for (j = 0; j < 1000; j++)

4 unit_work(i, j);

but we rewrite it into recursions�
1 void work_rec(rectangle b) {

2 if (small(b)) {

3 ...

4 } else {

5 rectangle c[2][2];

6 split(b, c); // split b into 2x2 sub−rectangles
7 for (i = 0; i < 2; i++) {

8 for (i = 0; i < 2; i++) {

9 #pragma omp task

10 work_rec(b[i][j]);

11 }

12 }

13 #pragma omp taskwait

14 }

15 }

load ≈ 0

load ∼ [100, 10000] clocks

42 / 74

Visualizing schedulers

static

dynamic

2D recursive (midway)

2D recursive (end)

43 / 74

SpMV with divide and conquer

you may recursively divide the matrix A submatrices, until
nnz in a submatrix becomes sufficiently small (divide and
conquer)
putting memory management issues aside, it is:�

1 void SpMV_rec(A, x) {

2 if (nnz(A) is small) {

3 return SpMV_serial(A, x, y);

4 } else if (M >= N) {

5 A0_,A1_ = divide_rows(A);

6 y0 = SpMV_rec(A0_, x);

7 y1 = SpMV_rec(A1_, x);

8 return y0 ++ y1; // concatination
9 } else {

10 A_0,A_1 = divide_cols(A);

11 x0,x1 = divide(x);

12 y0 = SpMV_rec(A_0, x0);

13 y1 = SpMV_rec(A_0, x0);

14 return y0 + y1; // vector addition
15 }

16 }

44 / 74

. . . and there is taskloop

syntax:�
1 #pragma omp taskloop

2 for(i = init; i < limit; i += incr)

3 S

syntactic restrictions are equivalent to work-sharing for

conceptually, it creates tasks each of which is responsible for
an (or a few) iteration(s)

unlike work-sharing for, it is generating tasks, so #pragma

omp taskloop is supposed to be executed by a single thread,
like the task construct

45 / 74

Pros/cons of various approaches

static:

partitioning iterations is simple and does not require
communication
mapping between work ↔ thread is deterministic and
predictable (why it’s important?)
may cause load imbalance (leave some threads idle, even
when other threads have many work to do)

dynamic:

less prone to load imbalance, if chunks are sufficiently small
partitioning iterations needs communication (no two threads
execute the same iteration) and may become a bottleneck
mapping between iterations and threads is non-deterministic
OpenMP’s dynamic scheduler is inflexible in partitioning
nested loops

46 / 74

Pros/cons of schedulers

divide and conquer + tasks :

less prone to load imbalance, as in dynamic
distributing tasks needs communication, but efficient
implementation techniques are known
mapping between work and thread is non-deterministic, as in
dynamic
you can flexibly partition loop nests in various ways (e.g.,
keep the space to square-like)
need some coding efforts (easily circumvented by additional
libraries; e.g., TBB’s blocked range2d and parallel for)

47 / 74

Deterministic and predictable schedulers

programs often execute the same for
loops many times, with the same trip
counts, and with the same iteration
touching a similar region

such iterative applications may benefit
from reusing data brought into cache in
the previous execution of the same loop

a deterministic scheduler achieves this
benefit

t

t

48 / 74

Contents

1 A Running Example: SpMV

2 parallel pragma

3 Work sharing constructs
loops (for)
scheduling
task parallelism (task and taskwait)

4 Data sharing clauses

5 SIMD constructs

49 / 74

Data sharing

parallel, for, task pragma accept clauses specifying which
variables should be shared among threads or between the
parent/child tasks (or otherwise privatized/replicated to each
thread)

2.19 “Data Environments”

private

firstprivate

shared

reduction (only for parallel and for)
copyin

50 / 74

https://www.openmp.org/spec-html/5.0/openmpse27.html#x135-5430002.19

Data sharing/privatizing example

�
1 int main() {

2 int S; /∗ shared ∗/
3 int P; /∗ made private below ∗/
4 #pragma omp parallel private(P) shared(S)

5 {

6 int L; /∗ automatically private ∗/
7 printf("S at %p, P at %p, L at %p\n",

8 &S, &P, &L);

9 }

10 return 0;

11 }

�
1 $ OMP_NUM_THREADS=2 ./a.out

2 S at 0x..777f494, P at 0x..80d0e28, L at 0x..80d0e2c

3 S at 0x..777f494, P at 0x..777f468, L at 0x..777f46c

51 / 74

Data sharing behavior

shared

x

x x xx

int x;

private

x

x x xx

int x;

firstprivate

x

x x xx

#pragma omp parallel
int x;

firstprivate(x)

reduction

x

x x xx

+

int x;

52 / 74

Race condition

definition: there is a race condition when concurrent threads
access the same location and one of which writes to it

a race condition almost always implies your program won’t
work

even something as simple as this (some accumulations may
be lost)�

1 x = 123;

2 #pragma omp parallel // assume we have 5 threads
3 {

4 ...

5 x++;

6 ..

7 }

8 printf("x = %d\n", x)

53 / 74

Race condition

thread 1 thread 2
x (123) → t

x ← 124

The increment by a thread is “lost”

54 / 74

Race condition

thread 1 thread 2
x (123) → t

x (123) → t
x ← 124

x ← 124

The increment by a thread is “lost”

54 / 74

Race condition

thread 1 thread 2
x (123) → t

x (123) → t
x ← 124

x ← 124

The increment by a thread is “lost”

54 / 74

Two basic tools to resolve race conditions

“make it atomic” #pragma

omp atomic and #pragma

omp critical : gaurantee
the specified operation to be
done atomically

“all you need may be a
reduction” reduction clause
performs efficient reduction
operations on behalf of you

thread 1 thread 2
x (123) → t
x ← 124

x (124) → t
x ← 125

x

x x xx

+

int x;

55 / 74

#pragma omp critical

syntax:�
1 #pragma omp critical

2 statement

effect: the execution of statement will not overlap with other
executions of statement (or any other statement labeled
#pragma omp critical, for that matter)

note: most general, but likely to be slow

56 / 74

#pragma omp atomic

syntax:�
1 #pragma omp atomic

2 var = var op exp

op is a predefined operation such as +, -, *, ...

effect: guarantee the read-update is done atomically (is not
lost); that is, var is not updated by someone else between the
read and update

note: semantically, it is like�
1 e = exp;
2 #pragma omp critical

3 var = var op e

but typical implementations take advantage of atomic
instructions supported by CPU, such as fetch-and-add or
compare-and-swap

57 / 74

Reduction

in general, “reduction” refers to
an operation to combine many
values into a single value. e.g.,

v = v1 + · · ·+ vn
v = max(v1, · · · , vn)
. . .

simply sharing the variable (v)
does not work (race condition)

one way to fix is to make
updates atomic, but it will be
slow

�
1 v = 0.0;

2 for (i = 0; i < n; i++) {

3 v += f(a + i * dt) * dt;

4 }�
1 v = 0.0;

2 #pragma omp parallel for

3 for (i = 0; i < n; i++) {

4 #pragma omp atomic

5 v += f(a + i * dt) * dt;

6 }

58 / 74

Reduction clause in OpenMP

a more efficient strategy:

let each thread work
(reduce) on its private
variable, and
when threads finish,
combine their partial
results into one

reduction clause in
OpenMP does just that
(2.19.5)

�
1 v = 0.0;

2 #pragma omp parallel for

reduction(+:v)

3 for (i = 0; i < n; i++) {

4 v += f(a + i * dt) * dt;

5 }

+ + + +

+

59 / 74

https://www.openmp.org/spec-html/5.0/openmpsu107.html#x140-5800002.19.5

Builtin reduction and user-defined reduction

(2.9.2)

reduction syntax:�
1 #pragma omp parallel reduction(op:var,var,...)

2 S

builtin reductions

op is one of +, *, -, &, ^, |, &&, and ||

(Since 3.1) min or max

builtin reductions are limited to simple types and common
operations → user-defined reductions (since 4.0)

60 / 74

https://www.openmp.org/spec-html/5.0/openmpsu41.html#x64-1290002.9.2

Why do you want user-defined reductions?

consider how to do reduction on 3-element vector

e.g., how to parallelize this loop safely�
1 typedef struct {

2 double a[3];

3 } vec_t;

4

5 int main() {

6 vec_t y;

7 vec_init(&y); /∗ y = {0,0,0} ∗/
8 #pragma omp parallel

9 #pragma omp for

10 for (long i = 0; i < 10000; i++) {

11 y.a[i % 3] += 1;

12 }

13 }

you cannot say reduction(+:y.a[0], y.a[1], y.a[2])

(what if you have 100 elements?)

we define a reduction operation on vec t type instead
61 / 74

User-defined reduction

syntax: (2.19.5.7)�
1 #pragma omp declare reduction (name : type : combine statement)

or�
1 #pragma omp declare reduction (name : type : combine statement) initializer

(init statement)

effect:

you can specify reduction(name : var) for a variable of
type type
init statement is executed by each thread before entering the
loop, typically to initialize its private copy of var
combine statement is executed to merge a partial result to
another variable

62 / 74

https://www.openmp.org/spec-html/5.0/openmpsu107.html#x140-5800002.19.5

User-defined reduction: a simple example

introduce reduction�
1 #pragma omp declare reduction \

2 (vp : vec t : vec add(&omp out,&omp in)) \

3 initializer(vec init(&omp priv))

vec add must be defined somewhere and not shown

add reduction(vp : y) to the for loop�
1 int main() {

2 vec_t y;

3 vec_init(&y); /∗ y={0,0,0} ∗/
4 #pragma omp parallel

5 #pragma omp for reduction(vp : y)

6 for (long i = 0; i < 10000; i++) {

7 y.a[i % 3] += 1;

8 }

9 }

63 / 74

User-defined reduction : how it works

with�
1 #pragma omp declare reduction \

2 (vp : vec t : vec add(&omp out,&omp in)) \

3 initializer(vec init(&omp priv))�
1 #pragma omp for reduction(vp : y)

2 for (long i = 0; i < 10000; i++) {

3 y.a[i % 3] += 1;

4 }

≈�
1 vec t y_priv; // thread−local copy of y
2 vec init(&y priv); // initializer
3 #pragma omp for

4 for (long i = 0; i < 10000; i++) {

5 y_priv.a[i % 3] += 1;

6 }

7 // merge the partial result into the shared variable
8 // actual implementation may be (is likely to be) different
9 vec add(&y, &y priv); // y += y priv

64 / 74

User-defined reduction : limitations

combine-statement can reference only two local variables
(omp in and omp out)

it should reduce (merge) omp in into omp out (e.g., omp out

+= omp in)

init-statement can reference only two local variables
(omp priv and omp orig)

omp priv : the private copy init-statement should initialize
omp orig : the original shared variable

⇒ local contexts necessary for initialization and reduction
must be encapsulated in the variables subject to reduction

65 / 74

An exercise : reduction on variable-length vectors

a variable-length version of the previous example�
1 typedef struct {

2 long n; // number of elements (variable)
3 double * a; // n elements
4 } vec_t;

and a reduction for it�
1 vec_t y;

2 long n = 100;

3 vec_init(&y, n); // n is a local context
4 #pragma omp parallel

5 #pragma omp for // how to do a proper reduction for y?
6 for (long j = 0; j < 1000000; j++) {

7 y.a[j % n] += 1;

8 }

the point is you cannot reference n in the initializer�
1 (!) #pragma omp declare reduction \

2 (vp : vec t : vec add(&omp out,&omp in)) \

3 initializer(vec init(&omp priv, n))

66 / 74

An exercise : reduction on variable-length vectors

initializer can reference omp orig to obtain the context (i.e.
vector length in this example)
⇒ define a function, vec init from, which takes the shared
y and initialize the private copy of y�

1 int vec_init_from(vec_t * v, vec_t * orig) {

2 long n = orig->n;

3 double * a = (double *)malloc(sizeof(double) * n);

4 for (long i = 0; i < n; i++) {

5 a[i] = 0;

6 }

7 v->n = n;

8 v->a = a;

9 return 0;

10 }

and say�
1 #pragma omp declare reduction \

2 (vp : vec_t : vec_add(&omp_out,&omp_in)) \

3 initializer(vec init from(&omp priv, &omp orig))

67 / 74

Contents

1 A Running Example: SpMV

2 parallel pragma

3 Work sharing constructs
loops (for)
scheduling
task parallelism (task and taskwait)

4 Data sharing clauses

5 SIMD constructs

68 / 74

SIMD constructs

simd pragma (2.9.3)

allows an explicit vectorization of for loops
syntax restrictions similar to omp for pragma apply

declare simd pragma (2.9.3.3)

instructs the compiler to generate vectorized versions of a
function
with it, loops with function calls can be vectorized

69 / 74

https://www.openmp.org/spec-html/5.0/openmpsu42.html#x65-1390002.9.3
https://www.openmp.org/spec-html/5.0/openmpsu42.html#x65-1390002.9.3.3

simd pragma

basic syntax (similar to omp for):�
1 #pragma omp simd clauses

2 for (i = ...; i < ...; i += ...)

3 S

clauses

aligned(var,var,. . . :align)
uniform(var,var,. . .) says variables are loop invariant
linear(var,var,. . . :stride) says variables have the specified
stride between consecutive iterations

70 / 74

declare simd pragma

basic syntax (similar to omp for):�
1 #pragma omp declare simd clauses

2 function definition

clauses

those for simd pragma
notinbranch

inbranch

71 / 74

SIMD pragmas, rationales

most automatic vectorizers give up vectorization in many
cases

1 conditionals (lanes may branch differently)
2 inner loops (lanes may have different trip counts)
3 function calls (function bodies are not vectorized)
4 iterations may not be independent

simd and declare simd directives should eliminate obstacles
3 and 4 and significantly enhance vectorization opportunities

72 / 74

A note on GCC OpenMP SIMD implementation

GCC simd and declare simd ≈ existing auto vectorizer −
dependence analysis

declare simd functions are first converted into a loop over
all vector elements and then passed to the loop vectorizer

�
1 #pragma omp declare simd

2 float f(float x, float y) {

3 return x + y;

4 }

→

�
1 float8 f(float8 vx, float8 vy) {

2 float8 r;

3 for (i = 0; i < 8; i++) {

4 float x = vx[i], y = vy[i]

5 r[i] = x + y;

6 }

7 return r;

8 }

the range of vectorizable loops in a recent version I
investigated (7.3.0) seems very limited

innermost loop with no conditionals
doubly nested loop with a very simple inner loop

73 / 74

Strategies for SpMV

parallelize only across different rows (a single row is
processed sequentially)

especially natural for CSR
extremely long rows may limit speedup

parallelize all non-zeros, with careful handling of y[i] +=

atomic accumulation (#pragma omp atomic)
reduction (#pragma omp reduction). you must have
user-defined reduction

divide rows until the number of non-zeros becomes small
(e.g., ≤ 5000)

further divide a single row if a row contains many zeros
can be done naturally with tasks

74 / 74

	A Running Example: SpMV
	parallel pragma
	Work sharing constructs
	loops (for)
	scheduling
	task parallelism (task and taskwait)

	Data sharing clauses
	SIMD constructs

