Kenjiro Taura

1/45

Contents

@ What is machine learning?
e A simple linear regression
e A handwritten digit recognition

© Training
e A simple gradient descent
@ Stochastic gradient descent

© Chain Rule

@ Back Propagation in Action

2/45

Contents

@ What is machine learning?
e A simple linear regression
e A handwritten digit recognition

3/45

What is machine learning?

e input: a set of training data set

o each z; is normally a real vector (i.e. many real values)

o cach ¢; is a real value (regression), 0/1 (binary classification),
a discrete value (multi-class classification), etc., depending
on the task

4/45

What is machine learning?

e input: a set of training data set

o each z; is normally a real vector (i.e. many real values)
o cach ¢; is a real value (regression), 0/1 (binary classification),
a discrete value (multi-class classification), etc., depending
on the task
e goal: a supervised machine learning tries to find a function f
that “matches” training data well. i.e.

f(.fEZ> ~ tz for ($1,tl) ecD
e put formally, find f that minimizes an error or a loss:
L(fﬂ D) = Z err(f(xi)a ti)v
(I¢7ti)€D

where err(y;, t;) is a function that measures an “error” or a
“distance” between the predicted output and the true Value4 .

Machine learning as an optimization problem

e finding a good function from the space of literally all possible
functions is neither easy nor meaningful

e we thus normally fix a search space of functions (F) to a
fixed expression parameterized by w and find a good function
fw € F (parametric models)

5/45

Machine learning as an optimization problem

e finding a good function from the space of literally all possible
functions is neither easy nor meaningful

e we thus normally fix a search space of functions (F) to a
fixed expression parameterized by w and find a good function
fw € F (parametric models)

@ the task is then to find the value of w that minimizes the loss:

L(w; D) = Z err(fu(:), t;)

(Ii,ti)ED

5/45

Contents

@ What is machine learning?
e A simple linear regression

6/45

A simple example (linear regression)
e training data D = { (x;,¢;) | i =0,1,---}

e x; : a real value
e t; : areal value

7/45

A simple example (linear regression)

e training data D = { (x;,¢;) | i =0,1,---}
e x; : a real value
e t; : areal value

@ let the search space be a set of polynomials of degree < 2. a
function is then parameterized by w = (wy wy ws). i.e.

fu(2) = wox® + w1 4wy

7/45

A simple example (linear regression)

e training data D = { (x;,¢;) | i =0,1,---}
e x; : a real value
e t; : areal value

@ let the search space be a set of polynomials of degree < 2. a
function is then parameterized by w = (wy wy ws). i.e.

fu(2) = wox® + w1 4wy

@ let the error function be a simple square distance:

err(y,t) = (y —t)?

7/45

A simple example (linear regression)

e training data D = { (x;,¢;) | i =0,1,---}
e x; : a real value
e t; : areal value

@ let the search space be a set of polynomials of degree < 2. a
function is then parameterized by w = (wy wy ws). i.e.

fu(2) = wox® + w1 4wy
@ let the error function be a simple square distance:
err(y, t) = (y — t)*

e the task is to find w = (wg, wy, wy) that minimizes:

L(w; D) = Z err(fu(x;),t;) = Z (woxF +wy i +wo—t;)?

(zi,ti)ED (zi,ti)€ED

7/45

Contents

@ What is machine learning?

e A handwritten digit recognition

8 /45

A more realistic example: digit recognition

e training data D = { (x;,¢;) |i=0,1,---}
e x; : a vector of pixel values of an image:
o t; : the class of z; (t; € {0,1,---,9})

9/45

A more realistic example: digit recognition

e training data D = { (x;,¢;) |i=0,1,---}
e x; : a vector of pixel values of an image:
o t; : the class of x; (t; € {0,1,---,9})

@ the search space: the following composition
parameterized by three matrices Wyand Wy

Jwow, (z) = softmax(Wimaxpool(ReLU(Wyxx)))

9/45

A handwritten digits recognition

e the output y = fu, w, () is a 10-vector
representing probabilities that x belongs to
each of the ten classes

I —

A handwritten digits recognition

e the output y = fu, w, () is a 10-vector
representing probabilities that x belongs to
each of the ten classes

@ a loss function is negative log-likelihood
commonly used in multiclass classifications

err(y,t) = NLL(y,t) = —log

A handwritten digits recognition

e the output y = fu, w, () is a 10-vector
representing probabilities that x belongs to
each of the ten classes

@ a loss function is negative log-likelihood
commonly used in multiclass classifications

err(y,t) = NLL(y,t) = —log

e the task is to find Wy and W, that minimize:

L(Wy, W1; D)
= > NLL(fwg.w, (@), i)

(z4,t;)€D

= Z NLL(softmax(Wimaxpool(ReLU(Wp * x))), t;)
(wist;)€D

Contents

© Training
e A simple gradient descent
@ Stochastic gradient descent

11/45

@ What is machine learning?
e A simple linear regression
e A handwritten digit recognition

© Training

o A simple gradient descent
@ Stochastic gradient descent

© Chain Rule

@ Back Propagation in Action

12/45

How to find the minimizing parameter?

@ it boils down to minimizing a function that takes lots of
parameters w

L(va) = Z err(fw(xi)ati)7
(z4,t,)ED

e we compute the derivative of L with respect to w and move
w to its opposite direction (gradient descent; GD)

,OL
w=w =1 o

(n : a small value controlling a learning rate)

@ repeat this until L(w; D) converges

13 /45

Why GD works

@ recall oL
L(w+ Aw; D) = L(w; D) + %Aw

@ so, by moving w slightly to the direction of gradient (i.e.,

Aw = —n% for small n),
toL OL'OL
L(w—n—;D) ~ L(w;D)—n——
< L(w; D)

L will decrease

14 /45

A linear regression example

e recall that in the linear regression example:

L(w; D) = Z (waa? 4 wim; + wo — t;)?
(Ii,tz‘)ED

15 /45

A linear regression example

e recall that in the linear regression example:
L(w; D) = Z (wox? + wyz; + Wy — ;)
(Ii,tz‘)ED
e differentiate L by w = *(wg w; ws) to get:
oL

o Z 2(wox? + wix; +wo — ;) (1 x5 x7)

({L‘Z’,ti)ED

(remark: we used a chain rule)

15 /45

A linear regression example

e recall that in the linear regression example:

L(w; D) = Z (waa? 4 wim; + wo — t;)?
(Ii,tz‘)ED

e differentiate L by w = *(wg w; ws) to get:

oL
5 = Z 2(wox? + wix; +wo — ;) (1 x5 x7)
({L‘Z’,ti)ED

(remark: we used a chain rule)

@ SO you repeat:

1
w=w-—n Z 2(wox? +wiz; +wo — ;) |
(Ii,ti)ED x?

until L(w; D) converges

15 /45

A problem of the gradient descent

e the loss function we want to minimize is normally a
summation over all training data:

Lw;D) = Y err(fulw),t;)

(Ii,tz‘)ED

16 /45

A problem of the gradient descent

e the loss function we want to minimize is normally a
summation over all training data:

L(w,D) = Z err(fw(wi)7ti)
(zi,t;)€ED

o the gradient descent method just described:

0
© computes —err(fy(z;),t;) for each training data

(x4, t;) € D, with the current value of w
@ sum them over whole data set and then update w

16 /45

A problem of the gradient descent

e the loss function we want to minimize is normally a
summation over all training data:

Lw;D) = Y err(fulw),t;)

(xi,ti)ED

o the gradient descent method just described:

© computes ielrr(fuw(x;),t;) for each training data
(x4, t;) € D, with the current value of w
@ sum them over whole data set and then update w
e it is commonly observed that the convergence becomes faster
when we update w more “incrementally” — Stochastic

Gradient Descent (SGD)

16 /45

@ What is machine learning?
e A simple linear regression
e A handwritten digit recognition

© Training
e A simple gradient descent
@ Stochastic gradient descent

© Chain Rule

@ Back Propagation in Action

17/45

SGD

repeat:

@ randomly draw a subset of training data D’ (a mini batch;
D' c D)

18 /45

SGD

repeat:
@ randomly draw a subset of training data D’ (a mini batch;
D' c D)
© compute the gradient of loss over the mini batch
OL(w; D") 0
T == Z %err(fw(mi), tz)

(x4,t;)€D’

18 /45

SGD

repeat:
@ randomly draw a subset of training data D’ (a mini batch;
D' c D)

© compute the gradient of loss over the mini batch

OL(w; D’ 0
% = Z %err(fw(%),ti)
(xi,ti)ED’
© update w
LOL(w; D)
w=w-—-—n—-=

ow

@ “update sooner rather than later”

18 /45

Computing the gradients

e in neural networks, a function is a
composition of many stages each
represented by a lot of parameters

. — W,
m = hlmi) OCO000
Ty = f2(w2;$1) TN
w /’///' /" f(\\\\\\

Yy = fn(wn;xn) E:/i/ S/ f’ \f \E i
¢ = err(y,t) o
e we need to differentiate ¢ by

Wy, -, Wy

19 /45

The digit recognition example

r1 = Wyxz

ry = ReLU(zy)
r3 = maxpool(zy)
vy = Wixs

y = softmax(xy)
¢ = NLL(y,?)

you need to differentiate ¢ by W, and W,

@ What is machine learning?
e A simple linear regression
e A handwritten digit recognition

© Training

e A simple gradient descent
@ Stochastic gradient descent

© Chain Rule

@ Back Propagation in Action

21 /45

Differentiating multivariable functions

e x="zy -+ x,_1) € R" (a column vector)
o f(x): ascalar

0
o definition: the gradient of f with respect to x, written of

oz’

1S a row n-vector s.t.

Af = flz+Azx) - f(z)
L of
~ axAx
n—1 6f
- 3 (5r) o

@ when it exists,

of _(of .. _9f
dr \ Oz Orn_1)’
SO

n—1
Af =~ Z of Az,

N
i=0 O

22 /45

The Chain Rule

e consider a function f that depends on
y= (Yo, ,Ym_1) € R™, each of which in turn depends on

Tr = (1‘07"' an—1> € R"
e the chain rule (math textbook version):
of af dy; :
= —-— (0<i<
8% 8yj 8ZE2 (= n)

0<j<m

23 /45

The Chain Rule : intuition

e say you increase an inplt vaitiBle z; by Az, each y; will
increase by

dy;
~ A I
al’i v

which will contribute to increasing the final output (f) by
o :
8yj 81‘1

24 /45

Chain Rule

e master the following “index-free” version for neural network

e x, y : ascalar (a single component in a vector/matrix/high
dimensional array)

e the chain rule (ML practioner’s version):

af 3 af 9y
ox Oy Oz
all variables y that x directly affects

/ N,

{ Y \

\ N \

\ (O \
\ Voo \

25 /45

Chain Rule and “Back Propagation”

@ Chain rule allows you to compute

oL

Ox’
the derivative of the loss with respect to
a variable, from

oL

oy’
the derivatives of the loss with respect to
upstream variables

oL oL dy
5 = > Ty 9

all variables y a step ahead of x

26 /45

@ What is machine learning?
e A simple linear regression
e A handwritten digit recognition

© Training

e A simple gradient descent
@ Stochastic gradient descent

© Chain Rule

@ Back Propagation in Action

27 /45

Component functions

we use the following functions

Convolution(W;z) : applies a linear filter
Linear(W;z) : multiplies z by W

ReLU(z) : zero negative values

maxpool(z) : replaces each 2x2 patch with 1x1
dropout(x) : probabilistically zeros some values
softmax(z) : normalizes x and amplifies large values
NLL(z,t) : negative log-likelihood

we summarize their definitions and their derivatives

28 /45

Convolution

o it takes
e an image = 2D pixels x a number of channels
e a “filter” or a “kernel”, which is essentially a small image
and slides the filter over all pixels of the input and takes the
local inner product at each pixel
e an illustration of a single channel 2D convolution (imagine a
grayscale image)

output image output image

X y

filter (kernel)

W

* -

29 /45

Convolution (a single channel version)

o W;;afilter (0<i<K,0<j<K)

@ b : bias

e z;,; : an input image (0 <i< H,0<j < W)

e y;; : an output image (0 <i< H — K +1,
0<j<W-—-K+1)

outputimage

filter (kernel) i

W
R L

Vi,j vi; = E Wy j1 Tigir j4j0 + b
0<i <K,0<j' <K

30/45

Convolution (multiple channels version)

e say input has IC' channels and output OC' channels
© Woeicij @ filter (0 <ic < IC,0 < oc < OC)

@ b, : bias (0 < oc < OC)

® Tj.;; . an input image

o

Yocs,j - an output image

VOCJJ Yocij = E woc,ic,i’,j’xiqi—l—z”,j—}—j'+bgc

icyi’ "

e the actual code does this for each sample in a batch
Vs,06,0,] Ysoeij = § | Woieit j/ Tsiciti,j+ir + boc
ic,i! '

31/45

Convolution (Back propagation 1)

oL
° ox
oL o Z oL 8ysﬂoc,i,j
O jic,it j+5 ot 0Yst 0cig Osicsitir gy
OL
= E 8—woc,ic,i’,j’
oc,i,j ys,oc,l,j

32/45

Convolution (Back propagation 2)

oL
° ow
aL B Z 8L 0ys oc! i,j
au}()c,ic,i’,j’ s,0¢ ,i,j ays oc’ i,j 8woc e, 3!
= E 8 O Tsjici+i i+’
sy, Ys,oc,i,j
oL
®
oL oL ﬁys,oc/,i,j
aboc . 8boc aboc
s,oc’ 1,5
oL
8,4,] ays,oc,i,j

33/45

Linear (a.k.a. Fully Connected Layer)

o definition:

y = Linear(W; x) Wz +b
Vioy o= Z Wijx; + b
J

34/45

Linear (Back Propagation 1)

oL

8[Ej

35/45

Linear (Back Propagation 2)

oL
® ow

aWzg ayz’ 81/‘/1]

oL
b

oL L 3y,
W 2

36 /45

ReLLU

e definition (scalar ReLU): for x € R, define
relu(zr) = max(z,0)

e derivatives of relu: for y = relu(z),

8y_{ 1 (z>0)
0 (z<0)

e = max(sign(z), 0)

37/45

ReLLU

e definition (vector ReLU): for a vector x € R", define
ReLU as the application of relu to each component

relu(zy)
ReLU(z) = :
relu(z,—1)

o derivatives of ReLU:

dy; {max(sign(x»,m (i = j)
Ox; 0 (27&])

38 /45

ReLLU

e back propagation:

oL 5 aL Ay

Oz

39 /45

softmax

o definition: for x € R"

exp(xo)
y = softmax(z) = :

—n—1 ___/ :
Zizo eXp(%) exp(n_1)

it is a vector whose:
e each component > 0,
e sum of all components = 1
e largest component “dominates”

e 10 40/45

log softmax

y = log(softmax(z))
1o — log 37 exp(a;)

1 — log 31y exp(z)

o (recall

) exp Fxo)

Z?;ol eXp(xj)

softmax(z)

exp(Tp_1)

41/45

NLL

o definition:

e I : m-vector
e ¢ : true class of the data

NLL(z,t) = —logx,
e thus,

y = NLL(softmax(z),t)

n—1

— atlog . expls)

=0

42/45

NLL softmax (Back propagation)

oL
8512'1'

oL oy
dy Ox;
g_g[;(_ 1+ exp(z;))

{
{

oL

Sy exp(wi)
exp(z;) 0

Ay S Fexp(as)

oL
P}
d

dy

(—1 + softmax(z;))
softmax(z;)

43 /45

Note: why NLL softmax?

e recall that for n-way classification, the output of
p = softmax(...) is an n-vector

@ p; is meant to be the probability that a particular sample
belongs to the class ¢

e for that purpose, a loss function could be any function that
decreases with p; (something as simple as —p,), where t is the
true label of the particular sample

e we isntead use NLL(p,t) = —logp;. why?

44 /45

Note: why NLL log softmax?

@ this is because,

@ the goal is to maximize the joint probability of the entire
data, which is the product of probabilities of individual
samples:

Hkptka

where t;, is the true label of sample k, and
@ the loss over a mini-batch is the sum of losses of individual
samples

e they can be reconciled by setting the loss function to — log p,

> (—logpy,) = —log (Ipy,)
k

45 /45

	What is machine learning?
	A simple linear regression
	A handwritten digit recognition

	Training
	A simple gradient descent
	Stochastic gradient descent

	Chain Rule
	Back Propagation in Action

