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What is machine learning?

input: a set of training data set

D = { (xi, ti) | i = 0, 1, · · · }
each xi is normally a real vector (i.e. many real values)
each ti is a real value (regression), 0/1 (binary classification),
a discrete value (multi-class classification), etc., depending
on the task

goal: a supervised machine learning tries to find a function f
that “matches” training data well. i.e.

f(xi) ≈ ti for (xi, ti) ∈ D

put formally, find f that minimizes an error or a loss:

L(f ;D) ≡
∑

(xi,ti)∈D

err(f(xi), ti),

where err(yi, ti) is a function that measures an “error” or a
“distance” between the predicted output and the true value
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Machine learning as an optimization problem

finding a good function from the space of literally all possible
functions is neither easy nor meaningful

we thus normally fix a search space of functions (F) to a
fixed expression parameterized by w and find a good function
fw ∈ F (parametric models)

the task is then to find the value of w that minimizes the loss:

L(w;D) ≡
∑

(xi,ti)∈D

err(fw(xi), ti)
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A simple example (linear regression)

training data D = { (xi, ti) | i = 0, 1, · · · }
xi : a real value
ti : a real value

let the search space be a set of polynomials of degree ≤ 2. a
function is then parameterized by w = (w0 w1 w2). i.e.

fw(x) ≡ w2x
2 + w1x+ w0

let the error function be a simple square distance:

err(y, t) ≡ (y − t)2

the task is to find w = (w0, w1, w2) that minimizes:

L(w;D) =
∑

(xi,ti)∈D

err(fw(xi), ti) =
∑

(xi,ti)∈D

(w2x
2
i+w1xi+w0−ti)

2
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A more realistic example: digit recognition

training data D = { (xi, ti) | i = 0, 1, · · · }
xi : a vector of pixel values of an image:
ti : the class of xi (ti ∈ {0, 1, · · · , 9})

the search space: the following composition
parameterized by three matrices W0and W1

fW0,W1(x) ≡ softmax(W1maxpool(ReLU(W0∗x)))
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A handwritten digits recognition

the output y = fW0,W1(x) is a 10-vector
representing probabilities that x belongs to
each of the ten classes

a loss function is negative log-likelihood
commonly used in multiclass classifications

err(y, t) = NLL(y, t) ≡ − log yt

the task is to find W0 and W1 that minimize:

L(W0,W1;D)

=
∑

(xi,ti)∈D

NLL(fW0,W1
(xi), ti)

=
∑

(xi,ti)∈D

NLL(softmax(W1maxpool(ReLU(W0 ∗ x))), ti)

∗

x

ReLU

x1

x3

x2

x4

W0

W1

y t

NLL

ℓ

maxpool

softmax

×
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How to find the minimizing parameter?

it boils down to minimizing a function that takes lots of
parameters w

L(w;D) =
∑

(xi,ti)∈D

err(fw(xi), ti),

we compute the derivative of L with respect to w and move
w to its opposite direction (gradient descent; GD)

w = w − ηt
∂L

∂w

(η : a small value controlling a learning rate)

repeat this until L(w;D) converges

13 / 45



Why GD works

recall

L(w +∆w;D) ≈ L(w;D) +
∂L

∂w
∆w

so, by moving w slightly to the direction of gradient (i.e.,
∆w = −η

t∂L
∂w

for small η),

L(w − η
t∂L

∂w
;D) ≈ L(w;D)− η

∂L

∂w

t∂L

∂w
< L(w;D)

L will decrease
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A linear regression example

recall that in the linear regression example:

L(w;D) =
∑

(xi,ti)∈D

(w2x
2
i + w1xi + w0 − ti)

2

differentiate L by w = t(w0 w1 w2) to get:

∂L

∂w
=

∑
(xi,ti)∈D

2(w2x
2
i + w1xi + w0 − ti)(1 xi x2

i )

(remark: we used a chain rule)

so you repeat:

w = w − η
∑

(xi,ti)∈D

2(w2x
2
i + w1xi + w0 − ti)

 1
xi

x2
i


until L(w;D) converges
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A problem of the gradient descent

the loss function we want to minimize is normally a
summation over all training data:

L(w;D) =
∑

(xi,ti)∈D

err(fw(xi), ti)

the gradient descent method just described:

1 computes
∂

∂w
err(fw(xi), ti) for each training data

(xi, ti) ∈ D, with the current value of w
2 sum them over whole data set and then update w

it is commonly observed that the convergence becomes faster
when we update w more “incrementally” → Stochastic
Gradient Descent (SGD)

16 / 45



A problem of the gradient descent

the loss function we want to minimize is normally a
summation over all training data:

L(w;D) =
∑

(xi,ti)∈D

err(fw(xi), ti)

the gradient descent method just described:

1 computes
∂

∂w
err(fw(xi), ti) for each training data

(xi, ti) ∈ D, with the current value of w
2 sum them over whole data set and then update w

it is commonly observed that the convergence becomes faster
when we update w more “incrementally” → Stochastic
Gradient Descent (SGD)

16 / 45



A problem of the gradient descent

the loss function we want to minimize is normally a
summation over all training data:

L(w;D) =
∑

(xi,ti)∈D

err(fw(xi), ti)

the gradient descent method just described:

1 computes
∂

∂w
err(fw(xi), ti) for each training data

(xi, ti) ∈ D, with the current value of w
2 sum them over whole data set and then update w

it is commonly observed that the convergence becomes faster
when we update w more “incrementally” → Stochastic
Gradient Descent (SGD)

16 / 45



Contents

1 What is machine learning?
A simple linear regression
A handwritten digit recognition

2 Training
A simple gradient descent
Stochastic gradient descent

3 Chain Rule

4 Back Propagation in Action

17 / 45



SGD

repeat:

1 randomly draw a subset of training data D′ (a mini batch;
D′ ⊂ D)

2 compute the gradient of loss over the mini batch

∂L(w;D′)

∂w
=

∑
(xi,ti)∈D′

∂

∂w
err(fw(xi), ti)

3 update w

w = w − ηt
∂L(w;D′)

∂w
4 “update sooner rather than later”
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Computing the gradients

in neural networks, a function is a
composition of many stages each
represented by a lot of parameters

x1 = f1(w1; x)

x2 = f2(w2; x1)

. . .

y = fn(wn; xn)

ℓ = err(y, t)

we need to differentiate ℓ by
w1, · · · , wn

W

xi

xi+1 = f(Wxi)

19 / 45



The digit recognition example

x1 = W0 ∗ x
x2 = ReLU(x1)

x3 = maxpool(x2)

x4 = W1x3

y = softmax(x4)

ℓ = NLL(y, t)

you need to differentiate ℓ by W0 and W1

∗

x

ReLU

x1

x3

x2

x4

W0

W1

y t

NLL

ℓ

maxpool

softmax

×
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Differentiating multivariable functions

x = t(x0 · · · xn−1) ∈ Rn (a column vector)
f(x) : a scalar

definition: the gradient of f with respect to x, written
∂f

∂x
,

is a row n-vector s.t.

∆f ≡ f(x+∆x)− f(x)

≈ ∂f

∂x
∆x

=

n−1∑
i=0

(
∂f

∂x

)
i

∆xi

when it exists,
∂f

∂x
=

(
∂f

∂x0
· · · ∂f

∂xn−1

)
,

so

∆f ≈
n−1∑
i=0

∂f

∂xi
∆xi
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The Chain Rule

consider a function f that depends on
y = (y0, · · · , ym−1) ∈ Rm, each of which in turn depends on
x = (x0, · · · , xn−1) ∈ Rn

the chain rule (math textbook version):

∂f

∂xi

=
∑

0≤j<m

∂f

∂yj

∂yj
∂xi

(0 ≤ i < n)

x0 · · · xn−1

f

x

y

y0 · · · ym−1

23 / 45



The Chain Rule : intuition

x0 · · · xn−1

f

x

y
y0 · · · ym−1

say you increase an input variable xi by ∆xi, each yj will
increase by

≈ ∂yj
∂xi

∆xi,

which will contribute to increasing the final output (f) by

≈ ∂f

∂yj

∂yj
∂xi

∆xi
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Chain Rule

master the following “index-free” version for neural network

x, y : a scalar (a single component in a vector/matrix/high
dimensional array)

the chain rule (ML practioner’s version):

∂f

∂x
=

∑
all variables y that x directly affects

∂f

∂y

∂y

∂x

x

y

f

25 / 45



Chain Rule and “Back Propagation”

Chain rule allows you to compute

∂L

∂x
,

the derivative of the loss with respect to
a variable, from

∂L

∂y
,

the derivatives of the loss with respect to
upstream variables

∂L

∂x
=

∑
all variables y a step ahead of x

∂L

∂y

∂y

∂x
∗

x

ReLU

x1

x3

x2

x4

W0

W1

y t

NLL

ℓ

maxpool

softmax

×
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Component functions

we use the following functions

Convolution(W ;x) : applies a linear filter
Linear(W ;x) : multiplies x by W
ReLU(x) : zero negative values
maxpool(x) : replaces each 2x2 patch with 1x1
dropout(x) : probabilistically zeros some values
softmax(x) : normalizes x and amplifies large values
NLL(x, t) : negative log-likelihood

we summarize their definitions and their derivatives
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Convolution

it takes
an image = 2D pixels × a number of channels
a “filter” or a “kernel”, which is essentially a small image

and slides the filter over all pixels of the input and takes the
local inner product at each pixel
an illustration of a single channel 2D convolution (imagine a
grayscale image)

*

filter (kernel)

output image output image

W

x y

=

29 / 45



Convolution (a single channel version)

Wi,j : a filter (0 ≤ i < K, 0 ≤ j < K)
b : bias
xi,j : an input image (0 ≤ i < H, 0 ≤ j < W )
yi,j : an output image (0 ≤ i < H −K + 1,
0 ≤ j < W −K + 1)

*

filter (kernel)

output image output image

W

x y

=

∀i, j yi,j =
∑

0≤i′<K,0≤j′<K

wi′,j′xi+i′,j+j′ + b

30 / 45



Convolution (multiple channels version)

say input has IC channels and output OC channels

Woc,ic,i,j : filter (0 ≤ ic < IC, 0 ≤ oc < OC)

boc : bias (0 ≤ oc < OC)

xic,i,j : an input image

yoc,i,j : an output image

∀oc, i, j yoc,i,j =
∑
ic,i′,j′

woc,ic,i′,j′xic,i+i′,j+j′ + boc

the actual code does this for each sample in a batch

∀s, oc, i, j ys,oc,i,j =
∑
ic,i′,j′

woc,ic,i′,j′xs,ic,i+i′,j+j′ + boc
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Convolution (Back propagation 1)

∂L
∂x

∂L

∂xs,ic,i+i′,j+j′
=

∑
s′,oc,i,j

∂L

∂ys′,oc,i,j

∂ys′,oc,i,j
∂xs,ic,i+i′,j+j′

=
∑
oc,i,j

∂L

∂ys,oc,i,j
woc,ic,i′,j′
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Convolution (Back propagation 2)

∂L
∂w

∂L

∂woc,ic,i′,j′
=

∑
s,oc′,i,j

∂L

∂ys,oc′,i,j

∂ys,oc′,i,j
∂woc,ic,i′,j′

=
∑
s,i,j

∂L

∂ys,oc,i,j
xs,ic,i+i′,j+j′

∂L
∂b

∂L

∂boc
=

∑
s,oc′,i,j

∂L

∂boc

∂ys,oc′,i,j
∂boc

=
∑
s,i,j

∂L

∂ys,oc,i,j
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Linear (a.k.a. Fully Connected Layer)

definition:

y = Linear(W ; x) ≡ Wx+ b

∀i yi =
∑
j

Wijxj + bi
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Linear (Back Propagation 1)

∂L
∂x

∂L

∂xj

=
∑
i′

∂L

∂yi′

∂yi′

∂xj

=
∑
i′

∂L

∂yi′
wi′j
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Linear (Back Propagation 2)

∂L
∂W

∂L

∂Wij

=
∑
i′

∂L

∂yi′

∂yi′

∂Wij

=
∂L

∂yi
xj

∂L
∂b

∂L

∂bi
=

∑
i′

∂L

∂yi′

∂yi′

∂bi

=
∂L

∂yi
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ReLU

definition (scalar ReLU): for x ∈ R, define

relu(x) ≡ max(x, 0)

derivatives of relu: for y = relu(x),

∂y

∂x
=

{
1 (x > 0)
0 (x ≤ 0)

= max(sign(x), 0)

0
x

y

y = relu(x)
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ReLU

definition (vector ReLU): for a vector x ∈ Rn, define
ReLU as the application of relu to each component

ReLU(x) ≡

 relu(x0)
...

relu(xn−1)


derivatives of ReLU:

∂yj
∂xi

=

{
max(sign(xi), 0) (i = j)
0 (i ̸= j)
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ReLU

back propagation:

∂L

∂xj

=
∑
i

∂L

∂yi

∂yi
∂xj

=
∂L

∂yj

∂yj
∂xj

=


∂L

∂yj
(xj ≥ 0)

0 (xj < 0)
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softmax

definition: for x ∈ Rn

y = softmax(x) ≡ 1∑n−1
i=0 exp(xj)

 exp(x0)
...

exp(xn−1)


it is a vector whose:

each component > 0,
sum of all components = 1
largest component “dominates”

01234567890123456789

softmax1.0
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log softmax

y = log(softmax(x))

=

 x0 − log
∑n−1

i=0 exp(xi)
...

xn−1 − log
∑n−1

i=0 exp(xi)


(recall

softmax(x) ≡ 1∑n−1
i=0 exp(xj)

 exp(x0)
...

exp(xn−1)


)
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NLL

definition:

x : n-vector
t : true class of the data

NLL(x, t) ≡ − log xt

thus,

y = NLL(softmax(x), t)

= −xt + log
n−1∑
i=0

exp(xi)

42 / 45



NLL softmax (Back propagation)

∂L

∂xi

=
∂L

∂y

∂y

∂xi

=

{
∂L
∂y
(−1 + exp(xi)∑n−1

i=0 exp(xi)
) (i = t)

∂L
∂y

exp(xi)∑n−1
i=0 exp(xi)

(i ̸= t)

=

{ ∂L
∂y

(−1 + softmax(xi)) (i = t)
∂L
∂y

softmax(xi) (i ̸= t)
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Note: why NLL softmax?

recall that for n-way classification, the output of
p = softmax(. . .) is an n-vector

pi is meant to be the probability that a particular sample
belongs to the class i

for that purpose, a loss function could be any function that
decreases with pt (something as simple as −pt), where t is the
true label of the particular sample

we isntead use NLL(p, t) = − log pt. why?
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Note: why NLL log softmax?

this is because,
1 the goal is to maximize the joint probability of the entire

data, which is the product of probabilities of individual
samples:

Πkptk ,

where tk is the true label of sample k, and
2 the loss over a mini-batch is the sum of losses of individual

samples

they can be reconciled by setting the loss function to − log pt∑
k

(− log ptk) = − log (Πkptk)
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