Neural Networks Basics

Kenjiro Taura

Contents

What is machine learning?

- A simple linear regression
- A handwritten digit recognition

2 Training

- A simple gradient descent
- Stochastic gradient descent

3 Chain Rule

4 Back Propagation in Action

Contents

What is machine learning?

- A simple linear regression
- A handwritten digit recognition

2 Training

- A simple gradient descent
- Stochastic gradient descent

3 Chain Rule

4 Back Propagation in Action

What is machine learning?

• input: a set of *training data set*

$$D = \{ (x_i, t_i) \mid i = 0, 1, \cdots \}$$

- each x_i is normally a real vector (i.e. many real values)
- each t_i is a real value (regression), 0/1 (binary classification), a discrete value (multi-class classification), etc., depending on the task

What is machine learning?

• input: a set of *training data set*

$$D = \{ (x_i, t_i) \mid i = 0, 1, \cdots \}$$

- each x_i is normally a real vector (i.e. many real values)
- each t_i is a real value (regression), 0/1 (binary classification), a discrete value (multi-class classification), etc., depending on the task
- goal: a supervised machine learning tries to find a function f that "matches" training data well. i.e.

 $f(x_i) \approx t_i \text{ for } (x_i, t_i) \in D$

• put formally, find f that minimizes an *error* or a *loss*:

$$L(f; D) \equiv \sum_{(x_i, t_i) \in D} \operatorname{err}(f(x_i), t_i),$$

where $\operatorname{err}(y_i, t_i)$ is a function that measures an "error" or a "distance" between the predicted output and the true value

Machine learning as an optimization problem

- finding a good function from the space of *literally all* possible functions is neither easy nor meaningful
- we thus normally fix a search space of functions (*F*) to a fixed expression parameterized by *w* and find a good function *f_w* ∈ *F* (*parametric models*)

Machine learning as an optimization problem

- finding a good function from the space of *literally all* possible functions is neither easy nor meaningful
- we thus normally fix a search space of functions (*F*) to a fixed expression parameterized by *w* and find a good function *f_w* ∈ *F* (*parametric models*)
- the task is then to find the value of w that minimizes the loss:

$$L(w; D) \equiv \sum_{(x_i, t_i) \in D} \operatorname{err}(f_w(x_i), t_i)$$

Contents

What is machine learning?

- A simple linear regression
- A handwritten digit recognition

2 Training

- A simple gradient descent
- Stochastic gradient descent

3 Chain Rule

4 Back Propagation in Action

- training data $D = \{ (x_i, t_i) \mid i = 0, 1, \dots \}$
 - x_i : a real value
 - t_i : a real value

- training data $D = \{ (x_i, t_i) \mid i = 0, 1, \dots \}$
 - x_i : a real value
 - t_i : a real value
- let the search space be a set of polynomials of degree ≤ 2 . a function is then parameterized by $w = (w_0 \ w_1 \ w_2)$. i.e.

$$f_w(x) \equiv w_2 x^2 + w_1 x + w_0$$

- training data $D = \{ (x_i, t_i) \mid i = 0, 1, \dots \}$
 - x_i : a real value
 - t_i : a real value
- let the search space be a set of polynomials of degree ≤ 2 . a function is then parameterized by $w = (w_0 \ w_1 \ w_2)$. i.e.

$$f_w(x) \equiv w_2 x^2 + w_1 x + w_0$$

• let the error function be a simple square distance:

$$\operatorname{err}(y,t) \equiv (y-t)^2$$

- training data $D = \{ (x_i, t_i) \mid i = 0, 1, \dots \}$
 - x_i : a real value
 - t_i : a real value
- let the search space be a set of polynomials of degree ≤ 2 . a function is then parameterized by $w = (w_0 \ w_1 \ w_2)$. i.e.

$$f_w(x) \equiv w_2 x^2 + w_1 x + w_0$$

• let the error function be a simple square distance:

$$\operatorname{err}(y,t) \equiv (y-t)^2$$

• the task is to find $w = (w_0, w_1, w_2)$ that minimizes:

$$L(w; D) = \sum_{(x_i, t_i) \in D} \operatorname{err}(f_w(x_i), t_i) = \sum_{(x_i, t_i) \in D} (w_2 x_i^2 + w_1 x_i + w_0 - t_i)^2$$

Contents

What is machine learning?

- A simple linear regression
- A handwritten digit recognition

2 Training

- A simple gradient descent
- Stochastic gradient descent

3 Chain Rule

4 Back Propagation in Action

A more realistic example: digit recognition

• training data $D = \{ (x_i, t_i) \mid i = 0, 1, \dots \}$

- x_i : a vector of pixel values of an image:
- t_i : the class of x_i ($t_i \in \{0, 1, \dots, 9\}$)

A more realistic example: digit recognition

- training data $D = \{ (x_i, t_i) \mid i = 0, 1, \dots \}$
 - x_i : a vector of pixel values of an image:
 - t_i : the class of $x_i \ (t_i \in \{0, 1, \cdots, 9\})$
- the search space: the following composition parameterized by three matrices W_0 and W_1

 $f_{W_0,W_1}(x) \equiv \operatorname{softmax}(W_1 \operatorname{maxpool}(\operatorname{ReLU}(W_0 * x)))$

A handwritten digits recognition

• the output $y = f_{W_0,W_1}(x)$ is a 10-vector representing probabilities that x belongs to each of the ten classes

A handwritten digits recognition

- the output $y = f_{W_0,W_1}(x)$ is a 10-vector representing probabilities that x belongs to each of the ten classes
- a loss function is *negative log-likelihood* commonly used in multiclass classifications

$$\operatorname{err}(y,t) = \operatorname{NLL}(y,t) \equiv -\log y_t$$

A handwritten digits recognition

- the output $y = f_{W_0,W_1}(x)$ is a 10-vector representing probabilities that x belongs to each of the ten classes
- a loss function is *negative log-likelihood* commonly used in multiclass classifications

$$\operatorname{err}(y,t) = \operatorname{NLL}(y,t) \equiv -\log y_t$$

• the task is to find W_0 and W_1 that minimize:

$$= \sum_{(x_i, t_i) \in D}^{L(W_0, W_1; D)} \operatorname{NLL}(f_{W_0, W_1}(x_i), t_i)$$

 $= \sum_{(x_i, t_i) \in D} \text{NLL}(\text{softmax}(W_1 \text{maxpool}(\text{ReLU}(W_0 * x))), t_i)$

Contents

What is machine learning?

- A simple linear regression
- A handwritten digit recognition

2 Training

- A simple gradient descent
- Stochastic gradient descent

3 Chain Rule

4 Back Propagation in Action

Contents

What is machine learning?

- A simple linear regression
- A handwritten digit recognition

2 Training

- A simple gradient descent
- Stochastic gradient descent

3 Chain Rule

4 Back Propagation in Action

How to find the minimizing parameter?

• it boils down to minimizing a function that takes *lots of* parameters w

$$L(w; D) = \sum_{(x_i, t_i) \in D} \operatorname{err}(f_w(x_i), t_i),$$

• we compute the derivative of L with respect to w and move w to its opposite direction (gradient descent; GD)

$$w = w - \eta^t \frac{\partial L}{\partial w}$$

 $(\eta : a \text{ small value controlling a learning rate})$

• repeat this until L(w; D) converges

 \bullet recall

$$L(w + \Delta w; D) \approx L(w; D) + \frac{\partial L}{\partial w} \Delta w$$

• so, by moving w slightly to the direction of gradient (i.e., $\Delta w = -\eta \frac{{}^{t} \partial L}{\partial w}$ for small η),

$$L(w - \eta \frac{{}^{t}\partial L}{\partial w}; D) \approx L(w; D) - \eta \frac{\partial L}{\partial w} \frac{{}^{t}\partial L}{\partial w} < L(w; D)$$

L will decrease

A linear regression example

• recall that in the linear regression example:

$$L(w; D) = \sum_{(x_i, t_i) \in D} (w_2 x_i^2 + w_1 x_i + w_0 - t_i)^2$$

A linear regression example

• recall that in the linear regression example:

$$L(w; D) = \sum_{(x_i, t_i) \in D} (w_2 x_i^2 + w_1 x_i + w_0 - t_i)^2$$

• differentiate L by $w = {}^t(w_0 \ w_1 \ w_2)$ to get:

$$\frac{\partial L}{\partial w} = \sum_{(x_i, t_i) \in D} 2(w_2 x_i^2 + w_1 x_i + w_0 - t_i)(1 \ x_i \ x_i^2)$$

(remark: we used a chain rule)

A linear regression example

• recall that in the linear regression example:

$$L(w; D) = \sum_{(x_i, t_i) \in D} (w_2 x_i^2 + w_1 x_i + w_0 - t_i)^2$$

• differentiate L by $w = {}^t(w_0 \ w_1 \ w_2)$ to get:

$$\frac{\partial L}{\partial w} = \sum_{(x_i, t_i) \in D} 2(w_2 x_i^2 + w_1 x_i + w_0 - t_i)(1 \ x_i \ x_i^2)$$

(remark: we used a chain rule)

• so you repeat:

$$w = w - \eta \sum_{(x_i, t_i) \in D} 2(w_2 x_i^2 + w_1 x_i + w_0 - t_i) \begin{pmatrix} 1 \\ x_i \\ x_i^2 \end{pmatrix}$$

until L(w; D) converges

A problem of the gradient descent

• the loss function we want to minimize is normally a summation over *all* training data:

$$L(w; D) = \sum_{(x_i, t_i) \in D} \operatorname{err}(f_w(x_i), t_i)$$

A problem of the gradient descent

• the loss function we want to minimize is normally a summation over *all* training data:

$$L(w; D) = \sum_{(x_i, t_i) \in D} \operatorname{err}(f_w(x_i), t_i)$$

- the gradient descent method just described:
 - computes $\frac{\partial}{\partial w} \operatorname{err}(f_w(x_i), t_i)$ for each training data $(x_i, t_i) \in D$, with the current value of w
 - **2** sum them over *whole data set* and then update w

A problem of the gradient descent

• the loss function we want to minimize is normally a summation over *all* training data:

$$L(w; D) = \sum_{(x_i, t_i) \in D} \operatorname{err}(f_w(x_i), t_i)$$

- the gradient descent method just described:
 - computes $\frac{\partial}{\partial w} \operatorname{err}(f_w(x_i), t_i)$ for each training data $(x_i, t_i) \in D$, with the current value of w
 - **2** sum them over *whole data set* and then update w
- it is commonly observed that the convergence becomes faster when we update w more "incrementally" → Stochastic Gradient Descent (SGD)

Contents

What is machine learning?

- A simple linear regression
- A handwritten digit recognition

2 Training

- A simple gradient descent
- Stochastic gradient descent

3 Chain Rule

4 Back Propagation in Action

SGD

repeat:

• randomly draw a *subset* of training data D' (a mini batch; $D' \subset D$)

SGD

repeat:

- randomly draw a *subset* of training data D' (a mini batch; $D' \subset D$)
- ② compute the gradient of loss *over the mini batch*

$$\frac{\partial L(w; \mathbf{D}')}{\partial w} = \sum_{(x_i, t_i) \in \mathbf{D}'} \frac{\partial}{\partial w} \operatorname{err}(f_w(x_i), t_i)$$

SGD

repeat:

- randomly draw a *subset* of training data D' (a mini batch; $D' \subset D$)
- ② compute the gradient of loss over the mini batch

$$\frac{\partial L(w; \mathbf{D}')}{\partial w} = \sum_{(x_i, t_i) \in \mathbf{D}'} \frac{\partial}{\partial w} \operatorname{err}(f_w(x_i), t_i)$$

0 update w

$$w = w - \eta^t \frac{\partial L(w; \mathbf{D}')}{\partial w}$$

update sooner rather than later"

Computing the gradients

• in neural networks, a function is a composition of many stages each represented by a lot of parameters

$$x_1 = f_1(w_1; x)$$

 $x_2 = f_2(w_2; x_1)$
...

$$y = f_n(w_n; x_n)$$
$$\ell = \operatorname{err}(y, t)$$

• we need to differentiate ℓ by w_1, \cdots, w_n

The digit recognition example

you need to differentiate ℓ by W_0 and W_1

Contents

What is machine learning?

- A simple linear regression
- A handwritten digit recognition

2) Training

- A simple gradient descent
- Stochastic gradient descent

Chain Rule

4 Back Propagation in Action

Differentiating multivariable functions

•
$$x = {}^{t}(x_0 \cdots x_{n-1}) \in R^n$$
 (a column vector)
• $f(x)$: a scalar

• **definition:** the gradient of f with respect to x, written $\frac{\partial f}{\partial x}$, is a row *n*-vector s.t.

$$\Delta f \equiv f(x + \Delta x) - f(x)$$
$$\approx \frac{\partial f}{\partial x} \Delta x$$
$$= \sum_{i=0}^{n-1} \left(\frac{\partial f}{\partial x}\right)_i \Delta x_i$$

• when it exists,

$$\frac{\partial f}{\partial x} = \left(\frac{\partial f}{\partial x_0} \cdots \frac{\partial f}{\partial x_{n-1}}\right),\,$$

 \mathbf{SO}

$$\Delta f \approx \sum_{i=0}^{n-1} \frac{\partial f}{\partial x_i} \Delta x_i$$

The Chain Rule

 $\bullet\,$ consider a function f that depends on

 $y = (y_0, \dots, y_{m-1}) \in \mathbb{R}^m$, each of which in turn depends on $x = (x_0, \dots, x_{n-1}) \in \mathbb{R}^n$

• the chain rule (math textbook version):

The Chain Rule : intuition

• say you increase an input variable x_i by Δx_i , each y_j will increase by

$$\approx \frac{\partial y_j}{\partial x_i} \Delta x_i,$$

which will contribute to increasing the final output (f) by

$$\approx \frac{\partial f}{\partial y_j} \frac{\partial y_j}{\partial x_i} \Delta x_i$$

Chain Rule

- master the following "index-free" version for neural network
- x, y: a scalar (a single component in a vector/matrix/high dimensional array)
- the chain rule (ML practioner's version):

Chain Rule and "Back Propagation"

• Chain rule allows you to compute

 $\frac{\partial L}{\partial x},$

the derivative of the loss with respect to a variable, from

$$\frac{\partial L}{\partial y},$$

the derivatives of the loss with respect to upstream variables

Contents

What is machine learning?

- A simple linear regression
- A handwritten digit recognition

2) Training

- A simple gradient descent
- Stochastic gradient descent

3 Chain Rule

we use the following functions

- Convolution(W; x) : applies a linear filter
- $\operatorname{Linear}(W; x)$: multiplies x by W
- $\operatorname{ReLU}(x)$: zero negative values
- maxpool(x) : replaces each 2x2 patch with 1x1
- dropout(x) : probabilistically zeros some values
- $\operatorname{softmax}(x)$: normalizes x and amplifies large values
- NLL(x, t) : negative log-likelihood

we summarize their definitions and their derivatives

Convolution

- it takes
 - an image = 2D pixels \times a number of channels
 - a "filter" or a "kernel", which is essentially a small image and slides the filter over all pixels of the input and takes the local inner product at each pixel
- an illustration of a single channel 2D convolution (imagine a grayscale image)

Convolution (a single channel version)

- $W_{i,j}$: a filter $(0 \le i < K, 0 \le j < K)$
- b : bias
- $x_{i,j}$: an input image $(0 \le i < H, 0 \le j < W)$
- $y_{i,j}$: an output image $(0 \le i < H K + 1, 0 \le j < W K + 1)$

Convolution (multiple channels version)

- say input has IC channels and output OC channels
- $W_{oc,ic,i,j}$: filter $(0 \le ic < IC, 0 \le oc < OC)$
- b_{oc} : bias $(0 \le oc < OC)$
- $x_{ic,i,j}$: an input image
- $y_{oc,i,j}$: an output image

$$\forall oc, i, j \quad y_{oc,i,j} = \sum_{ic,i',j'} w_{oc,ic,i',j'} x_{ic,i+i',j+j'} + b_{oc}$$

• the actual code does this for each sample in a batch

$$\forall s, oc, i, j \quad y_{s, oc, i, j} \quad = \quad \sum_{ic, i', j'} w_{oc, ic, i', j'} x_{s, ic, i+i', j+j'} + b_{oc}$$

Convolution (Back propagation 1)

• $\frac{\partial L}{\partial x}$

 $\frac{\partial L}{\partial x_{s,ic,i+i',j+j'}} \ = \ \sum_{s',oc,i,j} \frac{\partial L}{\partial y_{s',oc,i,j}} \frac{\partial y_{s',oc,i,j}}{\partial x_{s,ic,i+i',j+j'}}$ $= \sum_{oc.i.j} \frac{\partial L}{\partial y_{s,oc,i,j}} w_{oc,ic,i',j'}$

Convolution (Back propagation 2)

• $\frac{\partial L}{\partial w}$

$$\frac{\partial L}{\partial w_{oc,ic,i',j'}} = \sum_{s,oc',i,j} \frac{\partial L}{\partial y_{s,oc',i,j}} \frac{\partial y_{s,oc',i,j}}{\partial w_{oc,ic,i',j'}}$$
$$= \sum_{s,i,j} \frac{\partial L}{\partial y_{s,oc,i,j}} x_{s,ic,i+i',j+j'}$$

• $\frac{\partial L}{\partial b}$

$$\begin{array}{lcl} \displaystyle \frac{\partial L}{\partial b_{oc}} & = & \displaystyle \sum_{s,oc',i,j} \frac{\partial L}{\partial b_{oc}} \frac{\partial y_{s,oc',i,j}}{\partial b_{oc}} \\ & = & \displaystyle \sum_{s,i,j} \frac{\partial L}{\partial y_{s,oc,i,j}} \end{array}$$

Linear (a.k.a. Fully Connected Layer)

• definition:

$$y = \text{Linear}(W; x) \equiv Wx + b$$

 $\forall i \quad y_i = \sum_j W_{ij}x_j + b_i$

Linear (Back Propagation 1)

 $\frac{\partial L}{\partial x_j} = \sum_{i'} \frac{\partial L}{\partial y_{i'}} \frac{\partial y_{i'}}{\partial x_j}$ $= \sum_{i'} \frac{\partial L}{\partial y_{i'}} w_{i'j}$

Linear (Back Propagation 2)

• $\frac{\partial L}{\partial W}$

 $\frac{\partial L}{\partial W_{ij}} = \sum_{i'} \frac{\partial L}{\partial y_{i'}} \frac{\partial y_{i'}}{\partial W_{ij}}$ $= \frac{\partial L}{\partial y_i} x_j$

$$\begin{array}{lcl} \frac{\partial L}{\partial b_i} & = & \displaystyle \sum_{i'} \frac{\partial L}{\partial y_{i'}} \frac{\partial y_{i'}}{\partial b_i} \\ & = & \displaystyle \frac{\partial L}{\partial y_i} \end{array}$$

ReLU

• definition (scalar ReLU): for $x \in R$, define

 $\operatorname{relu}(x) \equiv \max(x,0)$

• derivatives of relu: for $y = \operatorname{relu}(x)$,

ReLU

• definition (vector ReLU): for a vector $x \in \mathbb{R}^n$, define ReLU as the application of relu to each component

$$\operatorname{ReLU}(x) \equiv \begin{pmatrix} \operatorname{relu}(x_0) \\ \vdots \\ \operatorname{relu}(x_{n-1}) \end{pmatrix}$$

• derivatives of ReLU:

$$\frac{\partial y_j}{\partial x_i} = \begin{cases} \max(\operatorname{sign}(x_i), 0) & (i = j) \\ 0 & (i \neq j) \end{cases}$$

ReLU

• back propagation:

$$\begin{array}{lcl} \frac{\partial L}{\partial x_j} & = & \displaystyle \sum_i \frac{\partial L}{\partial y_i} \frac{\partial y_i}{\partial x_j} \\ & = & \displaystyle \frac{\partial L}{\partial y_j} \frac{\partial y_j}{\partial x_j} \\ & = & \left\{ \begin{array}{c} \frac{\partial L}{\partial y_j} & (x_j \ge 0) \\ 0 & (x_j < 0) \end{array} \right. \end{array} \right. \end{array}$$

softmax

• definition: for $x \in \mathbb{R}^n$

$$y = \operatorname{softmax}(x) \equiv \frac{1}{\sum_{i=0}^{n-1} \exp(x_i)} \begin{pmatrix} \exp(x_0) \\ \vdots \\ \exp(x_{n-1}) \end{pmatrix}$$

it is a vector whose:

- each component > 0,
- sum of all components = 1
- largest component "dominates"

$\log \operatorname{softmax}$

$$y = \log(\operatorname{softmax}(x))$$
$$= \begin{pmatrix} x_0 - \log \sum_{i=0}^{n-1} \exp(x_i) \\ \vdots \\ x_{n-1} - \log \sum_{i=0}^{n-1} \exp(x_i) \end{pmatrix}$$

• (recall

softmax(x)
$$\equiv \frac{1}{\sum_{i=0}^{n-1} \exp(x_i)} \begin{pmatrix} \exp(x_0) \\ \vdots \\ \exp(x_{n-1}) \end{pmatrix}$$

NLL

• definition:

- x : n-vector
- t : true class of the data

$$\mathrm{NLL}(x,t) \equiv -\log x_t$$

• thus,

$$y = \text{NLL}(\text{softmax}(x), t)$$
$$= -x_t + \log \sum_{i=0}^{n-1} \exp(x_i)$$

NLL softmax (Back propagation)

۲

$$\begin{aligned} \frac{\partial L}{\partial x_i} &= \frac{\partial L}{\partial y} \frac{\partial y}{\partial x_i} \\ &= \begin{cases} \frac{\partial L}{\partial y} (-1 + \frac{\exp(x_i)}{\sum_{i=0}^{n-1} \exp(x_i)}) & (i=t) \\ \frac{\partial L}{\partial y} \frac{\exp(x_i)}{\sum_{i=0}^{n-1} \exp(x_i)} & (i\neq t) \end{cases} \\ &= \begin{cases} \frac{\partial L}{\partial y} (-1 + \operatorname{softmax}(x_i)) & (i=t) \\ \frac{\partial L}{\partial y} \operatorname{softmax}(x_i) & (i\neq t) \end{cases} \end{aligned}$$

- recall that for *n*-way classification, the output of $p = \text{softmax}(\ldots)$ is an *n*-vector
- p_i is meant to be the *probability* that a particular sample belongs to the class i
- for that purpose, a loss function could be any function that decreases with p_t (something as simple as $-p_t$), where t is the true label of the particular sample
- we isntead use $NLL(p, t) = -\log p_t$. why?

Note: why NLL log softmax?

- this is because,
 - the goal is to maximize the joint probability of the entire data, which is the *product* of probabilities of individual samples:

$\Pi_k p_{t_k},$

where t_k is the true label of sample k, and

- e the loss over a mini-batch is the sum of losses of individual samples
- they can be reconciled by setting the loss function to $-\log p_t$

$$\sum_{k} \left(-\log p_{t_k} \right) = -\log \left(\Pi_k p_{t_k} \right)$$