
What You Must Know about Memory,

Caches, and Shared Memory

Kenjiro Taura

1 / 105

Contents

1 Introduction

2 Many algorithms are bounded by memory not CPU

3 Organization of processors, caches, and memory

4 So how costly is it to access data?
Latency
Bandwidth
More bandwidth = concurrent accesses

5 Other ways to get more bandwidth
Make addresses sequential
Make address generations independent
Prefetch by software (make address generations go ahead)
Use multiple threads/cores

6 How costly is it to communicate between threads?

2 / 105

Contents

1 Introduction

2 Many algorithms are bounded by memory not CPU

3 Organization of processors, caches, and memory

4 So how costly is it to access data?
Latency
Bandwidth
More bandwidth = concurrent accesses

5 Other ways to get more bandwidth
Make addresses sequential
Make address generations independent
Prefetch by software (make address generations go ahead)
Use multiple threads/cores

6 How costly is it to communicate between threads?

3 / 105

Introduction

so far, we have learned

parallelization across cores,
vectorization (SIMD) within a core, and
instruction level parallelism

another critical factor you must know to understand program
performance is data access

4 / 105

Why data access is so important?

no data, no computation�
1 for (k = 0; k < A.nnz; k++) {

2 i,j,Aij = A.elems[k];

3 y[i] += Aij * x[j];

4 }

�
1 for (i = 0; i < M; i++)

2 for (j = 0; j < N; j++)

3 for (k = 0; k < K; k++)

4 C(i,j) += A(i,k) * B(k,j);

accessing data is sometimes far more costly than calculation

moreover, the cost of the same data access instruction
significantly differs depending on where dare are coming from

registers
caches
main memory
another processor’s cache

5 / 105

Why data access is so important?

no data, no computation�
1 for (k = 0; k < A.nnz; k++) {

2 i,j,Aij = A.elems[k];

3 y[i] += Aij * x[j];

4 }

�
1 for (i = 0; i < M; i++)

2 for (j = 0; j < N; j++)

3 for (k = 0; k < K; k++)

4 C(i,j) += A(i,k) * B(k,j);

accessing data is sometimes far more costly than calculation

moreover, the cost of the same data access instruction
significantly differs depending on where dare are coming from

registers
caches
main memory
another processor’s cache

5 / 105

Why data access is so important?

no data, no computation�
1 for (k = 0; k < A.nnz; k++) {

2 i,j,Aij = A.elems[k];

3 y[i] += Aij * x[j];

4 }

�
1 for (i = 0; i < M; i++)

2 for (j = 0; j < N; j++)

3 for (k = 0; k < K; k++)

4 C(i,j) += A(i,k) * B(k,j);

accessing data is sometimes far more costly than calculation

moreover, the cost of the same data access instruction
significantly differs depending on where dare are coming from

registers
caches
main memory
another processor’s cache

5 / 105

Conceptual goals of the study

understand how are processors, caches and memory are
connected

understand the behavior of caches, so as to reason about how
much traffic the algorithm will generate between main
memory ↔ caches (and among cache levels)

⇒ be able to reason about a performance limit of your
program, due to the memory

6 / 105

Pragmatic goals of the study

latency: get a sense of how many cycles it takes to get data
from main memory and caches

bandwidth: get a sense of how much data CPU can bring
from main memory and caches
what does “memory bandwidth” we see in a processor spec
sheet really mean? e.g.,

the processor data sheet of E5-2698 (68 GB/s):
http://ark.intel.com/products/81060/Intel-Xeon-Processor-E5-2698-v3-40M-Cache-2_30-GHz

in general,

8 bytes × DDR frequency × memory channel, per CPU socket

our CPU (Ice Lake Xeon Platinum 8368)

8 bytes × 3200 MHz × 8 channels ≈ 200 GB/sec per socket

200× 2 sockets = 400 GB/sec in the entire node

Can we achieve this easily? If not, when/how can we?

7 / 105

http://ark.intel.com/products/81060/Intel-Xeon-Processor-E5-2698-v3-40M-Cache-2_30-GHz

Pragmatic goals of the study

latency: get a sense of how many cycles it takes to get data
from main memory and caches
bandwidth: get a sense of how much data CPU can bring
from main memory and caches

what does “memory bandwidth” we see in a processor spec
sheet really mean? e.g.,

the processor data sheet of E5-2698 (68 GB/s):
http://ark.intel.com/products/81060/Intel-Xeon-Processor-E5-2698-v3-40M-Cache-2_30-GHz

in general,

8 bytes × DDR frequency × memory channel, per CPU socket

our CPU (Ice Lake Xeon Platinum 8368)

8 bytes × 3200 MHz × 8 channels ≈ 200 GB/sec per socket

200× 2 sockets = 400 GB/sec in the entire node

Can we achieve this easily? If not, when/how can we?

7 / 105

http://ark.intel.com/products/81060/Intel-Xeon-Processor-E5-2698-v3-40M-Cache-2_30-GHz

Pragmatic goals of the study

latency: get a sense of how many cycles it takes to get data
from main memory and caches
bandwidth: get a sense of how much data CPU can bring
from main memory and caches
what does “memory bandwidth” we see in a processor spec
sheet really mean? e.g.,

the processor data sheet of E5-2698 (68 GB/s):
http://ark.intel.com/products/81060/Intel-Xeon-Processor-E5-2698-v3-40M-Cache-2_30-GHz

in general,

8 bytes × DDR frequency × memory channel, per CPU socket

our CPU (Ice Lake Xeon Platinum 8368)

8 bytes × 3200 MHz × 8 channels ≈ 200 GB/sec per socket

200× 2 sockets = 400 GB/sec in the entire node

Can we achieve this easily? If not, when/how can we?

7 / 105

http://ark.intel.com/products/81060/Intel-Xeon-Processor-E5-2698-v3-40M-Cache-2_30-GHz

Pragmatic goals of the study

latency: get a sense of how many cycles it takes to get data
from main memory and caches
bandwidth: get a sense of how much data CPU can bring
from main memory and caches
what does “memory bandwidth” we see in a processor spec
sheet really mean? e.g.,

the processor data sheet of E5-2698 (68 GB/s):
http://ark.intel.com/products/81060/Intel-Xeon-Processor-E5-2698-v3-40M-Cache-2_30-GHz

in general,

8 bytes × DDR frequency × memory channel, per CPU socket

our CPU (Ice Lake Xeon Platinum 8368)

8 bytes × 3200 MHz × 8 channels ≈ 200 GB/sec per socket

200× 2 sockets = 400 GB/sec in the entire node

Can we achieve this easily? If not, when/how can we?
7 / 105

http://ark.intel.com/products/81060/Intel-Xeon-Processor-E5-2698-v3-40M-Cache-2_30-GHz

Contents

1 Introduction

2 Many algorithms are bounded by memory not CPU

3 Organization of processors, caches, and memory

4 So how costly is it to access data?
Latency
Bandwidth
More bandwidth = concurrent accesses

5 Other ways to get more bandwidth
Make addresses sequential
Make address generations independent
Prefetch by software (make address generations go ahead)
Use multiple threads/cores

6 How costly is it to communicate between threads?

8 / 105

What does memory performance imply for

FLOPS?

many computationally efficient algorithms do not touch the
same data too many times

e.g., O(n) algorithms → uses a single element only a constant
number of times (on average)

if data ≫ cache for such an algorithm, the algorithm’s
performance is often limited by the memory bandwidth (or,
worse, latency), not processor’s compute throughput

9 / 105

What does memory performance imply for

FLOPS?

many computationally efficient algorithms do not touch the
same data too many times

e.g., O(n) algorithms → uses a single element only a constant
number of times (on average)

if data ≫ cache for such an algorithm, the algorithm’s
performance is often limited by the memory bandwidth (or,
worse, latency), not processor’s compute throughput

9 / 105

What does memory performance imply for

FLOPS?

many computationally efficient algorithms do not touch the
same data too many times

e.g., O(n) algorithms → uses a single element only a constant
number of times (on average)

if data ≫ cache for such an algorithm, the algorithm’s
performance is often limited by the memory bandwidth (or,
worse, latency), not processor’s compute throughput

9 / 105

Example: SpMV

remember COO

�
1 for (k = 0; k < A.nnz; k++) {

2 i,j,Aij = A.elems[k];

3 y[i] += Aij * x[j];

4 }

accesses 16 nnz bytes and performs 2 nnz flops
assuming elements of double (8 bytes) and indexes of ints
(4 bytes × 2), not counting access to x and y

details aside, it performs only an FMA / element

to achieve Skylake-X peak (16 DP FMAs per core per cycle),
a core must access 16 matrix elements (= 256 bytes) / cycle
assuming 2.0GHz processor and the matrix ≫ cache, it
requires the main memory bandwidth of

≈ 256 bytes× 2.0 GHz = 512GB/sec per core (no way!)

10 / 105

Example: SpMV

remember COO

�
1 for (k = 0; k < A.nnz; k++) {

2 i,j,Aij = A.elems[k];

3 y[i] += Aij * x[j];

4 }

accesses 16 nnz bytes and performs 2 nnz flops
assuming elements of double (8 bytes) and indexes of ints
(4 bytes × 2), not counting access to x and y

details aside, it performs only an FMA / element

to achieve Skylake-X peak (16 DP FMAs per core per cycle),
a core must access 16 matrix elements (= 256 bytes) / cycle
assuming 2.0GHz processor and the matrix ≫ cache, it
requires the main memory bandwidth of

≈ 256 bytes× 2.0 GHz = 512GB/sec per core (no way!)

10 / 105

Example: SpMV

remember COO

�
1 for (k = 0; k < A.nnz; k++) {

2 i,j,Aij = A.elems[k];

3 y[i] += Aij * x[j];

4 }

accesses 16 nnz bytes and performs 2 nnz flops
assuming elements of double (8 bytes) and indexes of ints
(4 bytes × 2), not counting access to x and y

details aside, it performs only an FMA / element

to achieve Skylake-X peak (16 DP FMAs per core per cycle),
a core must access 16 matrix elements (= 256 bytes) / cycle

assuming 2.0GHz processor and the matrix ≫ cache, it
requires the main memory bandwidth of

≈ 256 bytes× 2.0 GHz = 512GB/sec per core (no way!)

10 / 105

Example: SpMV

remember COO

�
1 for (k = 0; k < A.nnz; k++) {

2 i,j,Aij = A.elems[k];

3 y[i] += Aij * x[j];

4 }

accesses 16 nnz bytes and performs 2 nnz flops
assuming elements of double (8 bytes) and indexes of ints
(4 bytes × 2), not counting access to x and y

details aside, it performs only an FMA / element

to achieve Skylake-X peak (16 DP FMAs per core per cycle),
a core must access 16 matrix elements (= 256 bytes) / cycle
assuming 2.0GHz processor and the matrix ≫ cache, it
requires the main memory bandwidth of

≈ 256 bytes× 2.0 GHz = 512GB/sec per core (no way!)

10 / 105

Memory-bound algorithms (applications)

say an algorithm performs C flops (or computation in more
general) on N bytes of data

assume it needs to access every element of the N bytes at
least once (likely the case)

there are two obvious lower bounds on the time to complete
the algorithm

T ≥ C

the peak FLOPS
(compute)

T ≥ N

the peak memory bandwidth
(memory)

often, the latter is much larger and such algorithms are called
“memory-bound”

O(N), O(N logN) algorithms are almost always memory
bound

11 / 105

Memory-bound algorithms (applications)

say an algorithm performs C flops (or computation in more
general) on N bytes of data

assume it needs to access every element of the N bytes at
least once (likely the case)

there are two obvious lower bounds on the time to complete
the algorithm

T ≥ C

the peak FLOPS
(compute)

T ≥ N

the peak memory bandwidth
(memory)

often, the latter is much larger and such algorithms are called
“memory-bound”

O(N), O(N logN) algorithms are almost always memory
bound

11 / 105

Memory-bound algorithms (applications)

say an algorithm performs C flops (or computation in more
general) on N bytes of data

assume it needs to access every element of the N bytes at
least once (likely the case)

there are two obvious lower bounds on the time to complete
the algorithm

T ≥ C

the peak FLOPS
(compute)

T ≥ N

the peak memory bandwidth
(memory)

often, the latter is much larger and such algorithms are called
“memory-bound”

O(N), O(N logN) algorithms are almost always memory
bound

11 / 105

Memory-bound algorithms (applications)

memory-bound ⇐⇒

C

the peak FLOPS
≪ N

the peak memory bandwidth

⇐⇒
C

N
≪ the peak FLOPS

the peak memory bandwidth

the LHS: arithmetic intensity or compute intensity of the
algorithm
the reciprocal of RHS: the byte per FLOPS of the machine

note that being memory-bound suggests it is inefficient in the
processor utilization view point, but it is efficient in
time-complexity sense (it is not necessarily a bad thing)

12 / 105

Note: dense matrix-vector multiply

the same argument applies even if the matrix is dense

�
1 for (i = 0; i < M; i++)

2 for (j = 0; j < N; j++)

3 y[i] += a[i][j] * x[j];

MN flops on (MN +M +N) elements

⇒ it performs only an FMA / matrix element

13 / 105

Note: dense matrix-vector multiply

the same argument applies even if the matrix is dense

�
1 for (i = 0; i < M; i++)

2 for (j = 0; j < N; j++)

3 y[i] += a[i][j] * x[j];

MN flops on (MN +M +N) elements

⇒ it performs only an FMA / matrix element

13 / 105

Note: dense matrix-vector multiply

the same argument applies even if the matrix is dense

�
1 for (i = 0; i < M; i++)

2 for (j = 0; j < N; j++)

3 y[i] += a[i][j] * x[j];

MN flops on (MN +M +N) elements

⇒ it performs only an FMA / matrix element

13 / 105

Dense matrix-matrix multiply

the argument does not apply to matrix-matrix multiply
(we’ve been trying to get close to CPU peak)

+= *M

N K

K

N

C A B

for N ×N square matrices, it performs N3 FMAs on 3N2

elements

14 / 105

Dense matrix-matrix multiply

the argument does not apply to matrix-matrix multiply
(we’ve been trying to get close to CPU peak)

+= *M

N K

K

N

C A B

for N ×N square matrices, it performs N3 FMAs on 3N2

elements

14 / 105

Why dense matrix-matrix multiply can be

efficient?

assume M ∼ N ∼ K�
1 for (i = 0; i < M; i++)

2 for (j = 0; j < N; j++)

3 for (k = 0; k < K; k++)

4 C(i,j) += A(i,k) * B(k,j);

a microscopic argument
the innermost statement�

1 C(i,j) += A(i,k) * B(k,j)

still performs (only) 1 FMA for accessing 3 elements
but the same element (say C(i,j)) is used many (K) times
in the innermost loop
similarly, the same A(i,k) is used N times
⇒ after you use an element, if you reuse it many times
before it is evicted from a cache (even a register), then the
memory traffic is hopefully not a bottleneck 15 / 105

A simple memcpy experiment . . .

�
1 double t0 = cur_time();

2 memcpy(a, b, nb);

3 double t1 = cur_time();

�
1 $ gcc -O3 memcpy.c

2 $./a.out $((1 << 26)) # 64M long elements = 512MB

3 536870912 bytes copied in 0.117333 sec 4.575611 GB/sec

much lower than the advertised number . . .

16 / 105

A simple memcpy experiment . . .

�
1 double t0 = cur_time();

2 memcpy(a, b, nb);

3 double t1 = cur_time();

�
1 $ gcc -O3 memcpy.c

2 $./a.out $((1 << 26)) # 64M long elements = 512MB

3 536870912 bytes copied in 0.117333 sec 4.575611 GB/sec

much lower than the advertised number . . .

16 / 105

A simple memcpy experiment . . .

�
1 double t0 = cur_time();

2 memcpy(a, b, nb);

3 double t1 = cur_time();

�
1 $ gcc -O3 memcpy.c

2 $./a.out $((1 << 26)) # 64M long elements = 512MB

3 536870912 bytes copied in 0.117333 sec 4.575611 GB/sec

much lower than the advertised number . . .

16 / 105

Contents

1 Introduction

2 Many algorithms are bounded by memory not CPU

3 Organization of processors, caches, and memory

4 So how costly is it to access data?
Latency
Bandwidth
More bandwidth = concurrent accesses

5 Other ways to get more bandwidth
Make addresses sequential
Make address generations independent
Prefetch by software (make address generations go ahead)
Use multiple threads/cores

6 How costly is it to communicate between threads?

17 / 105

Cache and memory in a single-core processor

you almost certainly know this (caches and main memory),
don’t you?

memory
controller L3 cache

(physical) core

cache

18 / 105

. . . , with multi level caches, . . .

recent processors have multiple levels of caches (L1, L2, . . .)

(physical) core

L2 cache

L1 cache

multi-level caches

19 / 105

. . . , with multicores in a chip, . . .

a single chip has several cores
each core has its private caches (typically, L1 and L2)
cores in a chip share a cache (typical, L3) and main memory

memory
controller

hardware thread
(virtual core, CPU)

20 / 105

. . . , with simultaneous multithreading (SMT) in a

core, . . .

each core has two hardware threads, which share L1/L2
caches and some or all execution units

memory

controller L3 cache

hardware thread
(virtual core, CPU)

(physical) core

L2 cache
L1 cache

chip (socket, node, CPU)

21 / 105

. . . , and with multiple sockets per node.

each node has several chips (sockets), connected via an
interconnect (e.g., Intel QuickPath, AMD HyperTransport,
etc.)
each socket serves a part of the entire main memory
each core can still access any part of the entire main memory

hardware th

(virtual core

interconnect

22 / 105

Today’s typical single compute node

virtual core

core

socket

boardx2-8

x2-16

x2-8
SIMD (x8-32)}

Typical cache sizes

L1 : 16KB - 64KB/core

L2 : 256KB - 1MB/core

L3 : ∼ 50MB/socket

23 / 105

Cache 101

speed :
L1 > L2 > L3 > main memory

capacity :
L1 < L2 < L3 < main memory

each cache holds a subset of data in the main memory

L1,L2,L3 ⊂ main memory

typically but not necessarily,

L1 ⊂ L2 ⊂ L3 ⊂ main memory

which subset is in caches? → cache management
(replacement) policy

24 / 105

Cache 101

speed :
L1 > L2 > L3 > main memory

capacity :
L1 < L2 < L3 < main memory

each cache holds a subset of data in the main memory

L1,L2,L3 ⊂ main memory

typically but not necessarily,

L1 ⊂ L2 ⊂ L3 ⊂ main memory

which subset is in caches? → cache management
(replacement) policy

24 / 105

Cache 101

speed :
L1 > L2 > L3 > main memory

capacity :
L1 < L2 < L3 < main memory

each cache holds a subset of data in the main memory

L1,L2,L3 ⊂ main memory

typically but not necessarily,

L1 ⊂ L2 ⊂ L3 ⊂ main memory

which subset is in caches? → cache management
(replacement) policy

24 / 105

Cache 101

speed :
L1 > L2 > L3 > main memory

capacity :
L1 < L2 < L3 < main memory

each cache holds a subset of data in the main memory

L1,L2,L3 ⊂ main memory

typically but not necessarily,

L1 ⊂ L2 ⊂ L3 ⊂ main memory

which subset is in caches? → cache management
(replacement) policy

24 / 105

Cache 101

speed :
L1 > L2 > L3 > main memory

capacity :
L1 < L2 < L3 < main memory

each cache holds a subset of data in the main memory

L1,L2,L3 ⊂ main memory

typically but not necessarily,

L1 ⊂ L2 ⊂ L3 ⊂ main memory

which subset is in caches? → cache management
(replacement) policy

24 / 105

Cache management (replacement) policy

a cache generally holds data in recently accessed addresses, up
to its capacity

this is accomplished by the LRU replacement policy (or its
approximation):

every time a load/store instruction misses a cache, the least
recently used data in the cache will be replaced

⇒ a (very crude) approximation; data in 32KB L1 cache

≈ most recently accessed 32K distinct addresses

due to implementation constraints, real caches are slightly
more complex

25 / 105

Cache management (replacement) policy

a cache generally holds data in recently accessed addresses, up
to its capacity

this is accomplished by the LRU replacement policy (or its
approximation):

every time a load/store instruction misses a cache, the least
recently used data in the cache will be replaced

⇒ a (very crude) approximation; data in 32KB L1 cache

≈ most recently accessed 32K distinct addresses

due to implementation constraints, real caches are slightly
more complex

25 / 105

Cache management (replacement) policy

a cache generally holds data in recently accessed addresses, up
to its capacity

this is accomplished by the LRU replacement policy (or its
approximation):

every time a load/store instruction misses a cache, the least
recently used data in the cache will be replaced

⇒ a (very crude) approximation; data in 32KB L1 cache

≈ most recently accessed 32K distinct addresses

due to implementation constraints, real caches are slightly
more complex

25 / 105

Cache management (replacement) policy

a cache generally holds data in recently accessed addresses, up
to its capacity

this is accomplished by the LRU replacement policy (or its
approximation):

every time a load/store instruction misses a cache, the least
recently used data in the cache will be replaced

⇒ a (very crude) approximation; data in 32KB L1 cache

≈ most recently accessed 32K distinct addresses

due to implementation constraints, real caches are slightly
more complex

25 / 105

Cache organization : cache line

a cache = a set of fixed size lines

typical line size = 64 bytes or 128
bytes,

a single line is the minimum unit of
data transfer between levels (and
replacement)

cache line

64 bytes

512 lines

a 32KB cache with 64 bytes

lines (holds most recently

accessed 512 distinct blocks)

26 / 105

Cache organization : cache line

a cache = a set of fixed size lines

typical line size = 64 bytes or 128
bytes,

a single line is the minimum unit of
data transfer between levels (and
replacement)

cache line

64 bytes

512 lines

a 32KB cache with 64 bytes

lines (holds most recently

accessed 512 distinct blocks)

26 / 105

Cache organization : cache line

a cache = a set of fixed size lines

typical line size = 64 bytes or 128
bytes,

a single line is the minimum unit of
data transfer between levels (and
replacement)

cache line

64 bytes

512 lines

a 32KB cache with 64 bytes

lines (holds most recently

accessed 512 distinct blocks)

data in 32KB L1 cache (line size 64B)

≈ most recently accessed 512 distinct lines
26 / 105

Associativity of caches

full associative: a block can occupy any
line in the cache, regardless of its address

direct map: a block has only one
designated “seat” (set), determined by its
address

K-way set associative: a block has K
designated “seats”, determined by its
address

direct map ≡ 1-way set associative

full associative ≡ ∞-way set associative

set

27 / 105

An example cache organization

Ice Lake Platinum 8368
level line size capacity associativity
L1 64B 48KB/core 12
L2 64B 512KB/core? 8
L3 64B 57MB/socket (38 cores) ??

Skylake-X Gold 6130

level line size capacity associativity
L1 64B 32KB/core 8
L2 64B 1MB/core 16
L3 64B 22MB/socket (16 cores) 11

Ivy Bridge E5-2650L

level line size capacity associativity
L1 64B 32KB/core 8
L2 64B 256KB/core 8
L3 64B 36MB/socket (8 cores) 20

28 / 105

What you need to remember in practice about

associativity

avoid having addresses used together “a-large-power-of-two”
bytes apart

corollaries:

avoid having a matrix with a-large-power-of-two number of
columns (a common mistake)
avoid managing your memory by chunks of
large-powers-of-two bytes (a common mistake)
avoid experiments only with n = 2p (a very common mistake)

why? ⇒ they tend to go to the same set and “conflict
misses” result

29 / 105

Conflict misses

consider 8-way set associative L1 cache with 32KB (line size
= 64B)

32KB/64B = 512 (= 29) lines
512/8 = 64 (= 26) sets

⇒ given an address a, a[6:11] (6 bits) designates the set it
belongs to (indexing)

0561112

a

address within a line (26 = 64 bytes)

index the set in the cache (among 26 = 64 sets)

if two addresses a and b are a multiple of 212 (4096) bytes
apart, they go to the same set

30 / 105

A convenient way to understand conflicts

it’s convenient to think of a cache
as two dimensional array of lines.
e.g. 32KB, 8-way set associative =
64 (sets) × 8 (ways) array of lines

S sets

K waysa line

Cache Size

31 / 105

A convenient way to understand conflicts

formula 1:

worst stride =
cache size

associativity
bytes

if addresses are this much apart,
they go to the same set

e.g., 32KB 8-way set associative
⇒ the worst stride = 4096

S sets

K waysa line

Cache Size

32 / 105

A convenient way to understand conflicts

lesser powers of two are significant
too; continuing with the same
setting (32KB, 8way-set
assocative)

stride the number of sets utilization
they are mapped to

2048 2 1/32
1024 4 1/16
512 8 1/8
256 16 1/4
128 32 1/2
64 64 1

formula 2: you stride by

P × line size (P divides S)

⇒ you utilize only 1/P of the
capacity

N.B. formula 1 is a special case,
with P = S

S sets

K waysa line

Cache Size

33 / 105

A remark about virtually-indexed vs.

physically-indexed caches

caches typically use physical addresses to select the set an
address maps to

so “addresses” I have been talking about are physical
addresses, not virtual addresses you can see as pointer values

a

address within a line (26 = 64 bytes)

index the set in the cache

since virtual → physical mapping is determined by the OS
(based on the availability of physical memory),

“two virtual addresses 2b bytes apart”

does not necessarily imply

“their physical addresses 2b bytes apart”

so what’s the significance of the stories so far?
34 / 105

A remark about virtually-indexed vs.

physically-indexed caches

virtual → physical translation happens with page granularity
(typically, 212 = 4096 bytes)

→ the last 12 bits are intact with the translation

a

address within a line (26 = 64 bytes)

index the set in the cache (among 29 = 512 sets)

1415

intact with address translation

changed by address translation

256KB/8way

0561112

35 / 105

A remark about virtually-indexed vs.

physically-indexed caches

therefore,

“two virtual addresses 2b bytes apart” → “their physical
addresses 2b bytes apart”

for up to page size (2b ≤ page size)

→ the formula 2 is valid for strides up to page size
stride utilization
4096 1/64
2048 1/32
1024 1/16
512 1/8
256 1/4
128 1/2
64 1

a

address within a line (26 = 64 bytes)

index the set in the cache (among 29 = 512 sets)

1415

intact with address translation

changed by address translation

256KB/8way

0561112

36 / 105

Remarks applied to different cache levels

small caches that use only the last 12 bits
to index the set make no difference
between virtually- and physically-indexed
caches

for larger caches, the utilization will
similarly drop up to stride = 4096, after
which it will stay around 1/64

stride utilization
. . . ∼ 1/64

16384 ∼ 1/64
8192 ∼ 1/64
4096 1/64
2048 1/32
1024 1/16
512 1/8
256 1/4
128 1/2
64 1

L1 (32KB/8-way) vs. L2 (256KB/8-way)

a

address within a line (26 = 64 bytes)

index the set in the cache (among 26 = 64 sets)

intact with address translation

32KB/8way

0561112

a

address within a line (26 = 64 bytes)

index the set in the cache (among 29 = 512 sets)

1415

intact with address translation

changed by address translation

256KB/8way

0561112

37 / 105

Avoiding conflict misses

e.g., if you have a matrix:�
1 float a[100][1024];

then a[i][j] and a[i+1][j] go to the same set in L1 cache;

⇒ scanning a column of such a matrix will experience almost
100% cache miss

avoid it by:�
1 float a[100][1024+16];

38 / 105

What are in the cache?

consider a cache of

capacity = C bytes
line size = Z bytes
associativity = K

approximation 0.0 (only consider C; ≡ Z = 1, K = ∞):

Cache ≈ most recently accessed C distinct addresses

approximation 1.0 (only consider C and Z; K = ∞):

Cache ≈ most recently accessed C/Z distinct lines

approximation 2.0 (consider associativity too):

depending on the stride of the addresses you use, reason
about the utilization (effective size) of the cache
in practice, avoid strides of “line size ×2b”

39 / 105

What are in the cache?

consider a cache of

capacity = C bytes
line size = Z bytes
associativity = K

approximation 0.0 (only consider C; ≡ Z = 1, K = ∞):

Cache ≈ most recently accessed C distinct addresses

approximation 1.0 (only consider C and Z; K = ∞):

Cache ≈ most recently accessed C/Z distinct lines

approximation 2.0 (consider associativity too):

depending on the stride of the addresses you use, reason
about the utilization (effective size) of the cache
in practice, avoid strides of “line size ×2b”

39 / 105

What are in the cache?

consider a cache of

capacity = C bytes
line size = Z bytes
associativity = K

approximation 0.0 (only consider C; ≡ Z = 1, K = ∞):

Cache ≈ most recently accessed C distinct addresses

approximation 1.0 (only consider C and Z; K = ∞):

Cache ≈ most recently accessed C/Z distinct lines

approximation 2.0 (consider associativity too):

depending on the stride of the addresses you use, reason
about the utilization (effective size) of the cache
in practice, avoid strides of “line size ×2b”

39 / 105

What are in the cache?

consider a cache of

capacity = C bytes
line size = Z bytes
associativity = K

approximation 0.0 (only consider C; ≡ Z = 1, K = ∞):

Cache ≈ most recently accessed C distinct addresses

approximation 1.0 (only consider C and Z; K = ∞):

Cache ≈ most recently accessed C/Z distinct lines

approximation 2.0 (consider associativity too):

depending on the stride of the addresses you use, reason
about the utilization (effective size) of the cache
in practice, avoid strides of “line size ×2b”

39 / 105

Contents

1 Introduction

2 Many algorithms are bounded by memory not CPU

3 Organization of processors, caches, and memory

4 So how costly is it to access data?
Latency
Bandwidth
More bandwidth = concurrent accesses

5 Other ways to get more bandwidth
Make addresses sequential
Make address generations independent
Prefetch by software (make address generations go ahead)
Use multiple threads/cores

6 How costly is it to communicate between threads?

40 / 105

Assessing the cost of data access

we like to obtain cost to access data in each level of the
caches as well as main memory

latency: time until the result of a load instruction becomes
available

bandwidth: the maximum amount of data per unit time that
can be transferred between the layer in question to CPU
(registers)

41 / 105

Contents

1 Introduction

2 Many algorithms are bounded by memory not CPU

3 Organization of processors, caches, and memory

4 So how costly is it to access data?
Latency
Bandwidth
More bandwidth = concurrent accesses

5 Other ways to get more bandwidth
Make addresses sequential
Make address generations independent
Prefetch by software (make address generations go ahead)
Use multiple threads/cores

6 How costly is it to communicate between threads?

42 / 105

How to measure a latency?

prepare an array of N records and access them repeatedly

to measure the latency, make sure N load instructions make
a chain of dependencies (link list traversal)�

1 for (N times) {

2 p = p->next;

3 }

make sure p->next links all the elements in a random order
(the reason becomes clear later)

cache line size

next pointers

N elements

(link all elements in a random order)

43 / 105

How to measure a latency?

prepare an array of N records and access them repeatedly
to measure the latency, make sure N load instructions make
a chain of dependencies (link list traversal)�

1 for (N times) {

2 p = p->next;

3 }

make sure p->next links all the elements in a random order
(the reason becomes clear later)

cache line size

next pointers

N elements

(link all elements in a random order)

43 / 105

How to measure a latency?

prepare an array of N records and access them repeatedly
to measure the latency, make sure N load instructions make
a chain of dependencies (link list traversal)�

1 for (N times) {

2 p = p->next;

3 }

make sure p->next links all the elements in a random order
(the reason becomes clear later)

cache line size

next pointers

N elements

(link all elements in a random order)

43 / 105

Data size vs. latency

main memory is local to the accessing thread�
1 $ numactl --cpunodebind 0 --interleave 0 ./mem

2 $ numactl -N 0 -i 0 ./mem # abbreviation

0

50

100

150

200

250

300

350

400

450

4096
16384

65536
262144

1.04858× 106

4.1943× 106

1.67772× 107

6.71089× 107

2.68435× 108

1.07374× 109

local

la
te
n
cy

/
lo
a
d
(C

P
U

cy
cl
es
)

size of the region (bytes)

latency per load in a random list traversal [0,1073741824]

memory
controller L3 cache

hardware thread

(virtual core, CPU)

(physical) core

L2 cache
L1 cache

chip (socket, node, CPU)

interconnect

44 / 105

How long are latencies

heavily depends on in which level of the cache data fit

environment: Skylake-X Xeon Gold 6130
(32KB/1MB/22MB)

size level latency latency
(cycles) (ns)

12,736 L1 4.004 1.31
103,616 L2 13.80 4.16

2,964,928 L3 77.40 24.24
301,307,584 main 377.60 115.45

L1

L2

L3

main
memory

0

50

100

150

200

250

300

350

400

450

10000 100000 1x106 1x107 1x108

la
te

nc
y/

lo
ad

size of the region (bytes)

latency per load in a random list traversal [0,1073741824]

local

45 / 105

A remark about replacement policy

if a cache stricly follows the LRU replacement policy, once
data overflow the cache, repeated access to the data will
quickly become almost-always-miss

the “cliffs” in the experimental data look gentler than the
theory would suggest

Cc
a
c
h
e
m
is
s
ra

te

0

1

C + 1

fu
ll
y

a
ss
o
c
ia
ti
v
e

size to repeatedly scan

L1

L2

L3

main
memory

0

50

100

150

200

250

300

350

400

450

10000 100000 1x106 1x107 1x108

la
te

nc
y/

lo
ad

size of the region (bytes)

latency per load in a random list traversal [0,1073741824]

local

46 / 105

A remark about replacement policy

if a cache stricly follows the LRU replacement policy, once
data overflow the cache, repeated access to the data will
quickly become almost-always-miss

the “cliffs” in the experimental data look gentler than the
theory would suggest

Cc
a
c
h
e
m
is
s
ra

te

0

1

C + 1 2C

fu
ll
y

a
ss
o
c
ia
ti
v
e

di
re
ct

m
ap

size to repeatedly scan

L1

L2

L3

main
memory

0

50

100

150

200

250

300

350

400

450

10000 100000 1x106 1x107 1x108

la
te

nc
y/

lo
ad

size of the region (bytes)

latency per load in a random list traversal [0,1073741824]

local

46 / 105

A remark about replacement policy

if a cache stricly follows the LRU replacement policy, once
data overflow the cache, repeated access to the data will
quickly become almost-always-miss

the “cliffs” in the experimental data look gentler than the
theory would suggest

Cc
a
c
h
e
m
is
s
ra

te

0

1

C + 1 2C
C(1 + 1/K)

fu
ll
y

a
ss
o
c
ia
ti
v
e

K
-w

a
y

se
t
a
ss
o
c
ia
ti
v
e

di
re
ct

m
ap

size to repeatedly scan

L1

L2

L3

main
memory

0

50

100

150

200

250

300

350

400

450

10000 100000 1x106 1x107 1x108

la
te

nc
y/

lo
ad

size of the region (bytes)

latency per load in a random list traversal [0,1073741824]

local

46 / 105

A remark about replacement policy

part of the gap is due to virtual → physical address
translation

another factor, especially for L3 cache, will be a recent
replacement policy for cyclic accesses (c.f. http://blog.
stuffedcow.net/2013/01/ivb-cache-replacement/)

Cc
a
c
h
e
m
is
s
ra

te

0

1

C + 1 2C
C(1 + 1/K)

fu
ll
y

a
ss
o
c
ia
ti
v
e

K
-w

a
y

se
t
a
ss
o
c
ia
ti
v
e

di
re
ct

m
ap

size to repeatedly scan

L1

L2

L3

main
memory

0

50

100

150

200

250

300

350

400

450

10000 100000 1x106 1x107 1x108

la
te

nc
y/

lo
ad

size of the region (bytes)

latency per load in a random list traversal [0,1073741824]

local

47 / 105

http://blog.stuffedcow.net/2013/01/ivb-cache-replacement/
http://blog.stuffedcow.net/2013/01/ivb-cache-replacement/

Latency to a remote main memory

make main memory remote to the accessing thread�
1 $ numactl -N 0 -i 1 ./mem

0

100

200

300

400

500

600

700

800

900

4096
16384

65536
262144

1.04858× 106

4.1943× 106

1.67772× 107

6.71089× 107

2.68435× 108

1.07374× 109

local
remote

la
te
n
cy

/
lo
a
d
(C

P
U

cy
cl
es
)

size of the region (bytes)

latency per load in a random list traversal [0,1073741824]

memory
controller L3 cache

hardware thread

(virtual core, CPU)

(physical) core

L2 cache
L1 cache

chip (socket, node, CPU)

interconnect

48 / 105

Contents

1 Introduction

2 Many algorithms are bounded by memory not CPU

3 Organization of processors, caches, and memory

4 So how costly is it to access data?
Latency
Bandwidth
More bandwidth = concurrent accesses

5 Other ways to get more bandwidth
Make addresses sequential
Make address generations independent
Prefetch by software (make address generations go ahead)
Use multiple threads/cores

6 How costly is it to communicate between threads?

49 / 105

Bandwidth of a random link list traversal

bandwidth =
total bytes read

elapsed time

in this experiment, we set record size = 64

0

5

10

15

20

25

30

35

40

45

50

1000 10000 100000 1× 106 1× 107 1× 108 1× 109

local
remote

b
a
n
d
w
id
th

(G
B
/
se
c)

size of the region (bytes)

bandwidth of list traversal [0,1073741824]

memory
controller L3 cache

hardware thread

(virtual core, CPU)

(physical) core

L2 cache
L1 cache

chip (socket, node, CPU)

interconnect

50 / 105

The “main memory” bandwidth

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1× 107 1× 108 1× 109

local
remote

b
a
n
d
w
id
th

(G
B
/
se
c)

size of the region (bytes)

bandwidth of list traversal [33554432,1073741824]

≪ the memcpy bandwidth we have seen (≈ 4.5 GB/s)

not to mention the “memory bandwidth” in the spec

51 / 105

Why is the bandwidth so low?

while traversing a single link list, only a single record access
(64 bytes) is “in flight” at a time

cache line size

next pointers

N elements

(link all elements in a random order)

memory
controller L3 cache

(physical) core

cache

in this condition,

bandwidth =
a record size

latency

e.g., take 115.45 ns as a latency

64 bytes

115.45 ns
≈ 0.55 GB/s

52 / 105

How to get more bandwidth?

just like flops/clock, the only way to get a better throughput
(bandwidth) is to perform many load operations concurrently

memory

controller L3 cache

(physical) core

cache

there are several ways to make it happen; let’s look at
conceptually the most straightforward: traverse multiple lists�

1 for (N times) {

2 p1 = p1->next;

3 p2 = p2->next;

4 ...

5 }

53 / 105

How to get more bandwidth?

just like flops/clock, the only way to get a better throughput
(bandwidth) is to perform many load operations concurrently

memory

controller L3 cache

(physical) core

cache

there are several ways to make it happen; let’s look at
conceptually the most straightforward: traverse multiple lists�

1 for (N times) {

2 p1 = p1->next;

3 p2 = p2->next;

4 ...

5 }

53 / 105

Contents

1 Introduction

2 Many algorithms are bounded by memory not CPU

3 Organization of processors, caches, and memory

4 So how costly is it to access data?
Latency
Bandwidth
More bandwidth = concurrent accesses

5 Other ways to get more bandwidth
Make addresses sequential
Make address generations independent
Prefetch by software (make address generations go ahead)
Use multiple threads/cores

6 How costly is it to communicate between threads?

54 / 105

The number of lists vs. bandwidth

0

20

40

60

80

100

120

140

160

180

1000 10000 100000 1× 106 1× 107 1× 108 1× 109

1 chains
2 chains
4 chains
5 chains
8 chains

10 chains
12 chains
14 chains

b
a
n
d
w
id
th

(G
B
/
se
c)

size of the region (bytes)

bandwidth with a number of chains [0,1073741824]

let’s zoom into “main memory” regime (size > 100MB)

55 / 105

Bandwidth to the local main memory (not cache)

an almost proportional improvement up to ∼ 10 lists

0

1

2

3

4

5

6

7

1× 107 1× 108 1× 109

1 chains
2 chains
4 chains
5 chains
8 chains

10 chains
12 chains
14 chains

b
a
n
d
w
id
th

(G
B
/
se
c)

size of the region (bytes)

bandwidth with a number of chains [33554432,1073741824]

56 / 105

Bandwidth to a remote main memory (not cache)

pattern is the same (improve up to ∼ 10 lists)

remember the remote latency is longer, so the bandwidth is
accordingly lower

0

0.5

1

1.5

2

2.5

3

3.5

4

1× 107 1× 108 1× 109

1 chains
2 chains
4 chains
8 chains

10 chains
12 chains
14 chains

b
a
n
d
w
id
th

(G
B
/
se
c)

size of the region (bytes)

bandwidth with a number of chains [33554432,1073741824]

57 / 105

The number of lists vs. bandwidth

observation: bandwidth increase fairly proportionally to the
number of lists, matching our understanding, . . .

memory
controller L3 cache

(physical) core

cache

question: . . . but up to ∼ 10, why?

answer: there is a limit in the number of load operations in
flight at a time

58 / 105

The number of lists vs. bandwidth

observation: bandwidth increase fairly proportionally to the
number of lists, matching our understanding, . . .

memory
controller L3 cache

(physical) core

cache

question: . . . but up to ∼ 10, why?

answer: there is a limit in the number of load operations in
flight at a time

58 / 105

The number of lists vs. bandwidth

observation: bandwidth increase fairly proportionally to the
number of lists, matching our understanding, . . .

memory
controller L3 cache

(physical) core

cache

question: . . . but up to ∼ 10, why?

answer: there is a limit in the number of load operations in
flight at a time

58 / 105

Line Fill Buffer

Line fill buffer (LFB) is the processor resource that keeps
track of outstanding cache misses, and its size is 10 in
Haswell

I could not find the definitive number for Skylake-X, but it
will probably be the same

this gives the maximum attainable bandwidth per core

cache line size× LFB size

latency

this is what we’ve seen (still much lower than what we see in
the “memory bandwidth” in the spec sheet)

how can we go beyond this? ⇒ the only way is to use
multiple cores (covered later)

59 / 105

Line Fill Buffer

Line fill buffer (LFB) is the processor resource that keeps
track of outstanding cache misses, and its size is 10 in
Haswell

I could not find the definitive number for Skylake-X, but it
will probably be the same

this gives the maximum attainable bandwidth per core

cache line size× LFB size

latency

this is what we’ve seen (still much lower than what we see in
the “memory bandwidth” in the spec sheet)

how can we go beyond this? ⇒ the only way is to use
multiple cores (covered later)

59 / 105

Line Fill Buffer

Line fill buffer (LFB) is the processor resource that keeps
track of outstanding cache misses, and its size is 10 in
Haswell

I could not find the definitive number for Skylake-X, but it
will probably be the same

this gives the maximum attainable bandwidth per core

cache line size× LFB size

latency

this is what we’ve seen (still much lower than what we see in
the “memory bandwidth” in the spec sheet)

how can we go beyond this? ⇒ the only way is to use
multiple cores (covered later)

59 / 105

Line Fill Buffer

Line fill buffer (LFB) is the processor resource that keeps
track of outstanding cache misses, and its size is 10 in
Haswell

I could not find the definitive number for Skylake-X, but it
will probably be the same

this gives the maximum attainable bandwidth per core

cache line size× LFB size

latency

this is what we’ve seen (still much lower than what we see in
the “memory bandwidth” in the spec sheet)

how can we go beyond this? ⇒ the only way is to use
multiple cores (covered later)

59 / 105

Contents

1 Introduction

2 Many algorithms are bounded by memory not CPU

3 Organization of processors, caches, and memory

4 So how costly is it to access data?
Latency
Bandwidth
More bandwidth = concurrent accesses

5 Other ways to get more bandwidth
Make addresses sequential
Make address generations independent
Prefetch by software (make address generations go ahead)
Use multiple threads/cores

6 How costly is it to communicate between threads?

60 / 105

Other ways to get more bandwidth

we’ve learned:

maximum bandwidth ≈ as many memory accesses as
possible always in flight
there is a limit due to LFB entries (10 in Haswell)

so far, we have achieved larger bandwidth by traversing
multiple lists explicitly (sometimes difficult if not impossible
to apply)

fortunately, the life is not always that tough; there are other
ways to issue many memory accesses concurrently

1 make addresses sequential
2 make address generations independent
3 prefetch by software (make address generations go ahead)
4 use multiple threads/cores

remember, all boil down to keep as many memory accesses as
possible (up to LFB entries) in flight

61 / 105

Other ways to get more bandwidth

we’ve learned:

maximum bandwidth ≈ as many memory accesses as
possible always in flight
there is a limit due to LFB entries (10 in Haswell)

so far, we have achieved larger bandwidth by traversing
multiple lists explicitly (sometimes difficult if not impossible
to apply)

fortunately, the life is not always that tough; there are other
ways to issue many memory accesses concurrently

1 make addresses sequential
2 make address generations independent
3 prefetch by software (make address generations go ahead)
4 use multiple threads/cores

remember, all boil down to keep as many memory accesses as
possible (up to LFB entries) in flight

61 / 105

Other ways to get more bandwidth

we’ve learned:

maximum bandwidth ≈ as many memory accesses as
possible always in flight
there is a limit due to LFB entries (10 in Haswell)

so far, we have achieved larger bandwidth by traversing
multiple lists explicitly (sometimes difficult if not impossible
to apply)

fortunately, the life is not always that tough; there are other
ways to issue many memory accesses concurrently

1 make addresses sequential
2 make address generations independent
3 prefetch by software (make address generations go ahead)
4 use multiple threads/cores

remember, all boil down to keep as many memory accesses as
possible (up to LFB entries) in flight

61 / 105

Other ways to get more bandwidth

we’ve learned:

maximum bandwidth ≈ as many memory accesses as
possible always in flight
there is a limit due to LFB entries (10 in Haswell)

so far, we have achieved larger bandwidth by traversing
multiple lists explicitly (sometimes difficult if not impossible
to apply)

fortunately, the life is not always that tough; there are other
ways to issue many memory accesses concurrently

1 make addresses sequential
2 make address generations independent
3 prefetch by software (make address generations go ahead)
4 use multiple threads/cores

remember, all boil down to keep as many memory accesses as
possible (up to LFB entries) in flight

61 / 105

Contents

1 Introduction

2 Many algorithms are bounded by memory not CPU

3 Organization of processors, caches, and memory

4 So how costly is it to access data?
Latency
Bandwidth
More bandwidth = concurrent accesses

5 Other ways to get more bandwidth
Make addresses sequential
Make address generations independent
Prefetch by software (make address generations go ahead)
Use multiple threads/cores

6 How costly is it to communicate between threads?

62 / 105

Make addresses sequential

again build a (single) linked list, but this time, p->next
always points to the immediately following block
note that the instruction sequence is identical to before; only
addresses differ

cache line size

next pointers

N elements

(link all elements in the sequential order)

vs.

cache line size

next pointers

N elements

(link all elements in a random order)

63 / 105

Bandwidth of traversing address-ordered list

a factor of 10 faster than random case, but this time with
only a single list

0

5

10

15

20

25

30

35

40

45

50

1000 10000 100000 1× 106 1× 107 1× 108 1× 109

address-sorted list
random list

b
a
n
d
w
id
th

(G
B
/
se
c)

size of the region (bytes)

bandwidth of random list traversal vs address-ordered list traversal [0,1073741824]

64 / 105

The reason this is faster

hardware prefetcher
CPU watches the sequence of addresses accessed
sequential addresses (addresses of a small constant stride)
trigger CPU’s hardware prefetcher
CPU issues load instruction ahead of actual data stream on
your behalf, to keep the maximum number of loads in flight

cache line size

next pointers

N elements

(link all elements in the sequential order)

65 / 105

Contents

1 Introduction

2 Many algorithms are bounded by memory not CPU

3 Organization of processors, caches, and memory

4 So how costly is it to access data?
Latency
Bandwidth
More bandwidth = concurrent accesses

5 Other ways to get more bandwidth
Make addresses sequential
Make address generations independent
Prefetch by software (make address generations go ahead)
Use multiple threads/cores

6 How costly is it to communicate between threads?

66 / 105

Make address generations independent

if addresses of memory accesses can be computed without
values returned from previous loads, CPU can issue them
concurrently�

1 for (N times) {

2 j = ... /∗ not use a[·] ∗/
3 a[j];

4 }

memory
controller L3 cache

(physical) core

cache

note: it’s not a prefetch (but a real fetch)
67 / 105

Bandwidth when not traversing a list

ptrchase : chase pointers of a random list

random : access random addresses, but w/o pointer chasing

sequential : access sequential addresses, w/o pointer chasing

0

50

100

150

200

250

300

350

1000 10000 100000 1× 106 1× 107 1× 108 1× 109

ptrchase
random

sequential

b
a
n
d
w
id
th

(G
B
/
se
c)

size of the region (bytes)

list traversal vs random access vs sequential access [0,1073741824]

68 / 105

Main memory bandwidth

pointer chase ≪ random < sequential

random is ≈ 5x faster than traversing a single random list

0

2

4

6

8

10

12

14

16

1× 107 1× 108 1× 109

ptrchase
random

sequential

b
a
n
d
w
id
th

(G
B
/
se
c)

size of the region (bytes)

list traversal vs random access vs sequential access [33554432,1073741824]

69 / 105

Main memory bandwidth (random vs. sequential)

sequential gets ≈ 3x more bandwidth than random
may not be as bad as you thought?
but why is there any difference, if both have the same
number of loads in flight?

0

2

4

6

8

10

12

14

16

1× 107 1× 108 1× 109

ptrchase
random

sequential

b
a
n
d
w
id
th

(G
B
/
se
c)

size of the region (bytes)

list traversal vs random access vs sequential access [33554432,1073741824]

70 / 105

Random (index) vs. sequential

if both can have up to 10 (LFB entries) outstanding L1 cache
misses, why is there any diffference?

I don’t have a definitive answer, but presumably,

the hardware prefetcher happens at multiple levels (→ L1
and → L2)
prefetchers to L2 are not subject of the LFP entries limit
(the limit will be slightly more)
prefething to L2 make effective latency to the processor
smaller

71 / 105

When “random access” is really bad

in practice, when random vs. sequential makes a large (≫ 2)
difference, it’s because

a single element < a single cache line

recall that touching a single byte in a cache line still brings
the whole line (64 bytes)

e.g., if you access an array of float (4 bytes) randomly, the
bandwidth of useful data is amplified by a factor of 16
(= 64/4)

72 / 105

Contents

1 Introduction

2 Many algorithms are bounded by memory not CPU

3 Organization of processors, caches, and memory

4 So how costly is it to access data?
Latency
Bandwidth
More bandwidth = concurrent accesses

5 Other ways to get more bandwidth
Make addresses sequential
Make address generations independent
Prefetch by software (make address generations go ahead)
Use multiple threads/cores

6 How costly is it to communicate between threads?

73 / 105

Software prefetch

hardware prefetch happens only for sequential (a small
constant stride) accesses

for other patterns, you the programmer may know addresses
you are going to access soon

if you can generate those addresses much ahead of actual
load instructions, you can prefetch them

instructions:

prefetcht{0,1,2}
prefetchnta

intrinsics:�
1 __builtin_prefetch(a [, rw, hint])

74 / 105

Software prefetch

hardware prefetch happens only for sequential (a small
constant stride) accesses

for other patterns, you the programmer may know addresses
you are going to access soon

if you can generate those addresses much ahead of actual
load instructions, you can prefetch them

instructions:

prefetcht{0,1,2}
prefetchnta

intrinsics:�
1 __builtin_prefetch(a [, rw, hint])

74 / 105

Software prefetch

hardware prefetch happens only for sequential (a small
constant stride) accesses

for other patterns, you the programmer may know addresses
you are going to access soon

if you can generate those addresses much ahead of actual
load instructions, you can prefetch them

instructions:

prefetcht{0,1,2}
prefetchnta

intrinsics:�
1 __builtin_prefetch(a [, rw, hint])

74 / 105

Software prefetch

hardware prefetch happens only for sequential (a small
constant stride) accesses

for other patterns, you the programmer may know addresses
you are going to access soon

if you can generate those addresses much ahead of actual
load instructions, you can prefetch them

instructions:

prefetcht{0,1,2}
prefetchnta

intrinsics:�
1 __builtin_prefetch(a [, rw, hint])

74 / 105

How to apply software prefetch?

truth is, there are actually not many cicumstances this is
useful

why? by the time you can prefetch it, you can likewise load it!

in our example,

no point in applying it to index-based accesses (CPU will
issue many load instructions already)
on the other hand, it’s difficult to apply it to list traversal (it
takes equally long time to generate address to prefetch)

the only way to apply it is to change the data structure of
the linked list

but how?

75 / 105

How to apply software prefetch?

truth is, there are actually not many cicumstances this is
useful

why? by the time you can prefetch it, you can likewise load it!

in our example,

no point in applying it to index-based accesses (CPU will
issue many load instructions already)
on the other hand, it’s difficult to apply it to list traversal (it
takes equally long time to generate address to prefetch)

the only way to apply it is to change the data structure of
the linked list

but how?

75 / 105

How to apply software prefetch?

truth is, there are actually not many cicumstances this is
useful

why? by the time you can prefetch it, you can likewise load it!

in our example,

no point in applying it to index-based accesses (CPU will
issue many load instructions already)

on the other hand, it’s difficult to apply it to list traversal (it
takes equally long time to generate address to prefetch)

the only way to apply it is to change the data structure of
the linked list

but how?

75 / 105

How to apply software prefetch?

truth is, there are actually not many cicumstances this is
useful

why? by the time you can prefetch it, you can likewise load it!

in our example,

no point in applying it to index-based accesses (CPU will
issue many load instructions already)
on the other hand, it’s difficult to apply it to list traversal (it
takes equally long time to generate address to prefetch)

the only way to apply it is to change the data structure of
the linked list

but how?

75 / 105

How to apply software prefetch?

truth is, there are actually not many cicumstances this is
useful

why? by the time you can prefetch it, you can likewise load it!

in our example,

no point in applying it to index-based accesses (CPU will
issue many load instructions already)
on the other hand, it’s difficult to apply it to list traversal (it
takes equally long time to generate address to prefetch)

the only way to apply it is to change the data structure of
the linked list

but how?

75 / 105

How to apply software prefetch?

truth is, there are actually not many cicumstances this is
useful

why? by the time you can prefetch it, you can likewise load it!

in our example,

no point in applying it to index-based accesses (CPU will
issue many load instructions already)
on the other hand, it’s difficult to apply it to list traversal (it
takes equally long time to generate address to prefetch)

the only way to apply it is to change the data structure of
the linked list

but how?

75 / 105

How to apply software prefetch?

have another pointer pointing many elements ahead�
1 for (N times) {

2 p = p->next;

3 prefetch(p->prefetch);

4 }

it should point to Q elements ahead to have Q concurrent
accesses in flight

”prefetch pointers” pointing to several elements ahead

76 / 105

Result

0

0.5

1

1.5

2

2.5

3

3.5

4

1× 107 1× 108 1× 109

prefetch=0
prefetch=10

b
a
n
d
w
id
th

(G
B
/
se
c)

size of the region (bytes)

bandwidth w/ and w/o prefetch [33554432,1073741824]

77 / 105

Summary: bandwidth of various access patterns

sequential (w/o pointer chase) > sorted list
> random (w/o pointer chase) ≈ 5 random lists ≈ a random
list + software prefetch
> a random list

0

2

4

6

8

10

12

14

16

1× 107 1× 108 1× 109

ptrchase (sorted)
ptrchase
random

sequential
ptrchase (prefetch)

ptrchase (x 10)

b
a
n
d
w
id
th

(G
B
/
se
c)

size of the region (bytes)

summary of various access patterns [33554432,1073741824]

78 / 105

Contents

1 Introduction

2 Many algorithms are bounded by memory not CPU

3 Organization of processors, caches, and memory

4 So how costly is it to access data?
Latency
Bandwidth
More bandwidth = concurrent accesses

5 Other ways to get more bandwidth
Make addresses sequential
Make address generations independent
Prefetch by software (make address generations go ahead)
Use multiple threads/cores

6 How costly is it to communicate between threads?

79 / 105

Memory bandwidth with multiple cores

the bandwidth to a single core is limited by LFB entries and
is much lower than the memory bandwidth itself

transfer (line) size × LFB entries

latency

you can go beyond that by using multiple cores and this is
the only way

80 / 105

Memory bandwidth with multiple cores

run up to 16 threads,
each running on a distinct physical core of a single socket
allocate all the data on the same socket (numactl -N 0 -i

0)
note: they are still random pointer chasing

0

20

40

60

80

100

120

1× 107 1× 108 1× 109

1 chains, 1 threads
10 chains, 1 threads
1 chains, 4 threads

10 chains, 4 threads
1 chains, 8 threads

10 chains, 8 threads
1 chains, 16 threads

10 chains, 16 threads

b
a
n
d
w
id
th

(G
B
/
se
c)

size of the region (bytes)

bandwidth with a number of threads [33554432,1073741824]

81 / 105

With random indexing and sequential accesses

similar experiments with random indexing/sequential accesses
∼ 80 GB/sec with sequential accesses by ≥ 12 threads
the theoretical peak is

8 bytes × 2.666 GHz × 6 channels = 128 GB/sec

0

20

40

60

80

100

120

140

160

180

1× 107 1× 108 1× 109

random 1 threads
sequential 1 threads

random 8 threads
sequential 8 threads
random 12 threads

sequential 12 threads
random 16 threads

sequential 16 threads

b
a
n
d
w
id
th

(G
B
/
se
c)

size of the region (bytes)

bandwidth with various methods and number of threads [33554432,1073741824]

82 / 105

With multiple CPU sockets

the total bandwidth depends on how to place threads and
data
threads\data CPU x CPU y all CPUs local CPU

CPU x 1-local 1-remote 1-all 1-local
all CPUs all-1 all-1 all-all all-local

control threads/data placement by numactl command
combine it with OMP PROC BIND=true to get a desired effect

hardware th
(virtual core

interconnect

83 / 105

numactl command (1)

usage (see man numactl for details)�
1 $ numactl options command

for underlying system calls, see man -s 3 numa

processors

-N x runs threads only on the CPU(s) x. e.g.,�
1 $ numactl -N 0 command # threads on CPU 0

--physcpubind x runs threads only on core(s) x. e.g.,�
1 # threads on cores 0-11 and 16-27

2 $ numactl --physcpubind 0-11,16-27 command

84 / 105

numactl command (2)

memory (data)

-i y allocates data (physical pages) on CPU(s) y�
1 $ numactl -i 0,1 command # data on CPU 0 or 1

2 $ numactl -i all command # data on all CPUs

-l allocates physical pages to the CPU that touches the page
for the first time (first touch policy; the default policy of
Linux)�

1 $ numactl -l command

85 / 105

About the -l option

-l (equivalent: --localalloc) allocates the physical page for
a logical page on the CPU that first touches it (first touch)

allocated physical pages do not move thereafter (unless you
do so by move pages() system call)

don’t be fooled by its name; it is not a policy that
automagically makes memory accesses local

quite contrary, it often makes a hotspot in a single CPU,
especially when only one thread initializes (first-touches) the
data

-iall is not optimal, but often much safer for parallel
applications

86 / 105

OpenMP thread placement

combine them with OMP NUM THREADS= and
OMP PROC BIND=true to get a desired effect. e.g.,�

1 $ OMP_NUM_THREADS=48 OMP_PROC_BIND=true numactl --physcpubind

0-11,16-27,32-43,48-59 -l command

to

run 12 threads on each CPU (of a host in the big partition)

and use the first touch policy

87 / 105

Achieved bandwidth

Skylake X 6130 ×4 CPUs (a host of the “big” partition)

use 12 (of 16) cores on each CPU

in each measurement, each thread reads ≈ 640MB
sequentially 10 times

setting threads bandwidth (GB/sec)
1-local 12 85
1-remote 12 16
1-all 12 57
all-1 48 2
all-all 48 97
all-local 48 320

88 / 105

Remarks on remote access bandwidths

numbers for remote accesses are ridiculously low

the measurement is repeated 6 times and there were almost
no variations in the result (within a few per cents)

I am suspecting a wrong BIOS snoop setting
(https://software.intel.com/en-us/forums/
software-tuning-performance-optimization-platform-monitoring/

topic/602160)

setting threads bandwidth (GB/sec)
1-local 12 85
1-remote 12 16
1-all 12 57
all-1 48 2
all-all 48 97
all-local 48 320

89 / 105

https://software.intel.com/en-us/forums/software-tuning-performance-optimization-platform-monitoring/topic/602160
https://software.intel.com/en-us/forums/software-tuning-performance-optimization-platform-monitoring/topic/602160
https://software.intel.com/en-us/forums/software-tuning-performance-optimization-platform-monitoring/topic/602160

Contents

1 Introduction

2 Many algorithms are bounded by memory not CPU

3 Organization of processors, caches, and memory

4 So how costly is it to access data?
Latency
Bandwidth
More bandwidth = concurrent accesses

5 Other ways to get more bandwidth
Make addresses sequential
Make address generations independent
Prefetch by software (make address generations go ahead)
Use multiple threads/cores

6 How costly is it to communicate between threads?

90 / 105

Shared memory

if thread P writes to an address a and then another thread B
reads from a, Q observes the value written by P

x

x = 100;

ordinary load/store instructions accomplish this (hardware
shared memory)
this should not be taken for granted; processors have caches
and a single address may be cached by multiple cores/sockets

91 / 105

Shared memory

if thread P writes to an address a and then another thread B
reads from a, Q observes the value written by P

x

x = 100;

ordinary load/store instructions accomplish this (hardware
shared memory)
this should not be taken for granted; processors have caches
and a single address may be cached by multiple cores/sockets91 / 105

Shared memory

⇒ processors sharing memory are running a complex, cache
coherence protocol to accomplish this
roughly,

1 a write to an address by a processor “invalidates” all other
cache lines holding the address, so that no caches hold
“stale” values

2 a read to an invalid line causes a miss and searches for a
cache holding its “valid” value

hardware th

(virtual core

interconnect

92 / 105

Shared memory

⇒ processors sharing memory are running a complex, cache
coherence protocol to accomplish this
roughly,

1 a write to an address by a processor “invalidates” all other
cache lines holding the address, so that no caches hold
“stale” values

2 a read to an invalid line causes a miss and searches for a
cache holding its “valid” value

hardware th

(virtual core

interconnect

92 / 105

Shared memory

⇒ processors sharing memory are running a complex, cache
coherence protocol to accomplish this
roughly,

1 a write to an address by a processor “invalidates” all other
cache lines holding the address, so that no caches hold
“stale” values

2 a read to an invalid line causes a miss and searches for a
cache holding its “valid” value

hardware th

(virtual core

interconnect

92 / 105

An example protocol : the MSI protocol

each line of a cache is inone of the following states

Modified (), Shared (), Invalid ()

Modified () ⇐⇒ you can read and write the line without
invoking a transaction
Shared () ⇐⇒ you can read but not write the line
without invoking a transaction
Invalid () ⇐⇒ you can neither read nor write the line
without invoking a transaction

93 / 105

An example protocol : the MSI protocol

each line of a cache is inone of the following states

Modified (), Shared (), Invalid ()

Modified () ⇐⇒ you can read and write the line without
invoking a transaction
Shared () ⇐⇒ you can read but not write the line
without invoking a transaction
Invalid () ⇐⇒ you can neither read nor write the line
without invoking a transaction

93 / 105

An example protocol : the MSI protocol

a single address may be cached in multiple caches (lines)
⇒ there are only two legitimate states for each line

1 one Modified (owner) + others Invalid (, , , , , . . .)
2 no Modified (, , , , , . . .)

hardware th
(virtual core

interconnect

94 / 105

An example protocol : the MSI protocol

a single address may be cached in multiple caches (lines)

⇒ there are only two legitimate states for each line

1 one Modified (owner) + others Invalid (, , , , , . . .)
2 no Modified (, , , , , . . .)

hardware th
(virtual core

interconnect

94 / 105

An example protocol : the MSI protocol

a single address may be cached in multiple caches (lines)
⇒ there are only two legitimate states for each line

1 one Modified (owner) + others Invalid (, , , , , . . .)

2 no Modified (, , , , , . . .)

hardware th
(virtual core

interconnect

94 / 105

An example protocol : the MSI protocol

a single address may be cached in multiple caches (lines)
⇒ there are only two legitimate states for each line

1 one Modified (owner) + others Invalid (, , , , , . . .)
2 no Modified (, , , , , . . .)

hardware th
(virtual core

interconnect

94 / 105

Cache states and transaction

suppose a processor reads or writes an address and finds a
line caching it

what happens when the line is in each state:
Modified Shared Invalid

read hit hit read miss
write hit write miss read miss; write miss

read miss: →
there may be a cache holding it in Modified state (owner)
searches for the owner and if found, downgrade it to Shared
, , , [], , . . .⇒ , , , [], , . . .

write miss: →
there may be caches holding it in Shared state (sharer)
searches for sharers and downgrade them to Invalid
, , , [], , . . .⇒ , , , [], , . . .

95 / 105

Cache states and transaction

suppose a processor reads or writes an address and finds a
line caching it

what happens when the line is in each state:
Modified Shared Invalid

read hit hit read miss
write hit write miss read miss; write miss

read miss: →
there may be a cache holding it in Modified state (owner)
searches for the owner and if found, downgrade it to Shared
, , , [], , . . .⇒ , , , [], , . . .

write miss: →
there may be caches holding it in Shared state (sharer)
searches for sharers and downgrade them to Invalid
, , , [], , . . .⇒ , , , [], , . . .

95 / 105

Cache states and transaction

suppose a processor reads or writes an address and finds a
line caching it

what happens when the line is in each state:
Modified Shared Invalid

read hit hit read miss
write hit write miss read miss; write miss

read miss: →
there may be a cache holding it in Modified state (owner)
searches for the owner and if found, downgrade it to Shared
, , , [], , . . .⇒ , , , [], , . . .

write miss: →
there may be caches holding it in Shared state (sharer)
searches for sharers and downgrade them to Invalid
, , , [], , . . .⇒ , , , [], , . . .

95 / 105

MESI and MESIF

exntensions to MSI have been commonly used

MESI: MSI + Exclusive (owned but not modified)

when a read request finds no other caches that have the line,
it owns it as Exclusive
Exclusive lines do not have to be written back to main
memory when discarded

MESIF: MESI + Forwarding (a cache responsible for
forwarding a line)

used in Intel QuickPath
when a line is shared by many readers, one is designated as
the Forwarder
when another cache requests the line, only the forwarder
sends it and the new requester becomes the forwarder
(in MSI or MESI, all sharers forward it)

96 / 105

MESI and MESIF

exntensions to MSI have been commonly used

MESI: MSI + Exclusive (owned but not modified)

when a read request finds no other caches that have the line,
it owns it as Exclusive
Exclusive lines do not have to be written back to main
memory when discarded

MESIF: MESI + Forwarding (a cache responsible for
forwarding a line)

used in Intel QuickPath
when a line is shared by many readers, one is designated as
the Forwarder
when another cache requests the line, only the forwarder
sends it and the new requester becomes the forwarder
(in MSI or MESI, all sharers forward it)

96 / 105

MESI and MESIF

exntensions to MSI have been commonly used

MESI: MSI + Exclusive (owned but not modified)

when a read request finds no other caches that have the line,
it owns it as Exclusive
Exclusive lines do not have to be written back to main
memory when discarded

MESIF: MESI + Forwarding (a cache responsible for
forwarding a line)

used in Intel QuickPath
when a line is shared by many readers, one is designated as
the Forwarder
when another cache requests the line, only the forwarder
sends it and the new requester becomes the forwarder
(in MSI or MESI, all sharers forward it)

96 / 105

How to measure communication latency?

measure “ping-pong” latency between two threads�
1 volatile long x = 0;

2 volatile long y = 0;

�
1 (ping thread)

2 for (i = 0; i < n; i++) {

3 x = i + 1;

4 while (y <= i) ;

5 }

�
1 (pong thread)

2 for (i = 0; i < n; i++) {

3 while (x <= i) ;

4 y = i + 1;

5 }

i

i

i+ 1

while (x <= i) ;

i+ 1
x

y y = i + 1;
x = i + 1;

while (y <= i) ;

i+ 1 i+ 1

97 / 105

Environment

Skylake X Gold 6130 (“big” partition of the IST cluster)

2 hardware threads × 16 cores × 4 sockets (= 128 processors
seen by OS)

ensure variables x and y are at least 64 bytes apart (not on
the same cache line)

bind both threads on specific processors by OpenMP
environment variable OMP BIND PROC=true

try all combinations of threads (i.e., with p threads, measure
all the p(p− 1) pairs) and show a matrix

98 / 105

Result

(i, j) indicates the roundtrip latency (in reference clocks)
between processor i and j

src dest latency
0 1-15 ≈ 800
0 16-63 ≈ 1100
0 64 ≈ 110
0 65-79 ≈ 450
0 80-127 ≈ 1100

a beautiful pattern emerges which is obviously telling

99 / 105

Result

e.g., which processor is
“close” to processor 0?

64 is closest
1-15 and 65-79 are close
16-63 and 80-127 are
farthest

a natural interpretation

x and (x+ 64) are two
hardware threads on a
core
0-15 (and 65-79) are the
16 physical cores (32
hwts) on a socket
others are on different
sockets

100 / 105

What they imply to parallel algorithms?

you do not want to have many threads concurrently updating
the same data

remember SpMV COO?�
1 // assume inside #pragma omp parallel

2 ...

3 #pragma omp for

4 for (k = 0; k < A.nnz; k++) {

5 i,j,Aij = A.elems[k];

6 #pragma omp atomic

7 y[i] += Aij * x[j];

8 }

y[i] += may be costing 1000 cycles when its single-thread
execution would take just dozens of cycles

101 / 105

Summary (1): latency and bandwidth

latency of data access heavily depends on which level of
caches you actually access:

L1 (a few cycles) ≤ main memory (> 200 cycles)

a single core bandwidth is limited by:

cache line size× LFB size

latency

for main memory, it’s much lower than what you see in the
spec

max bandwidth is attainable only with multiple cores

102 / 105

Summary (2): bandwidth differs by access

patterns

bandwidth =
line size× number of accesses in flight

latency

bandwidth heavily depends on the number of in-flight
accesses, which depend on access patterns

random address pointer chasing
random but independent addresses
sequential

103 / 105

Common misunderstanding

pointer chasing is always bad

not when data fit in L1 (perhaps L2) cache
not when accessed addresses are sequential
not when you manage to chase many pointer chains

random access is always worse than sequential access

not so much when an element ≈ cache size

104 / 105

Summary (3): inter processor communication

cores communicate as a side effect of memory accesses (cache
misses)

it is natually as expensive as L2/L3 misses (or more),
depending on whom you communicate with

shared memory is nice, but you cannot forget the cost

105 / 105

	Introduction
	Many algorithms are bounded by memory not CPU
	Organization of processors, caches, and memory
	So how costly is it to access data?
	Latency
	Bandwidth
	More bandwidth = concurrent accesses

	Other ways to get more bandwidth
	Make addresses sequential
	Make address generations independent
	Prefetch by software (make address generations go ahead)
	Use multiple threads/cores

	How costly is it to communicate between threads?

