Parallel and Distributed Programming Introduction

Kenjiro Taura

• Why Parallel Programming?

2 What Parallel Machines Look Like, and Where Performance Come From?

1 Why Parallel Programming?

2 What Parallel Machines Look Like, and Where Performance Come From?

Why parallel?

• frequencies no longer increase (end of Dennard scaling)

Why parallel?

- frequencies no longer increase (end of Dennard scaling)
- techniques to increase performance (Instruction-Level Parallelism, or ILP) of serial programs are increasingly difficult to pay off (Pollack's law)

Why parallel?

- frequencies no longer increase (end of Dennard scaling)
- techniques to increase performance (Instruction-Level Parallelism, or ILP) of serial programs are increasingly difficult to pay off (Pollack's law)
- multicore, manycore, and GPUs are in part response to it

have more transistors? \Rightarrow have more cores

source: http://cpudb.stanford.edu/

There are no serial machines any more

- virtually all CPUs are now *multicore*
- high performance accelerators (GPUs, AI accelerators, etc.) run at even low frequencies and have many more cores (manycore)

Processors for supercomputers are ordinary, perhaps even more so

https://www.top500.org/lists/top500/2024/06/

Rank	System	Cores	Rmax (PFlop/s)	Rpeak (PFlop/s)	Power (kW)
1	Frontler - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 644 20Hz, AMD Instinc MI250X Singshot-11, HPE D0E/5/C/0Ak Ridge National Laboratory United States	8,699,904	1,206.00	1,714.81	22,786
2	Aurora - HPE Cray EX - Intel Exascale Compute Blade, Xeon CPU Max 9/005202/40Ha Intel Data Center GPU Max slingshot-11, Intel D0E/52/Argone Naional Laboratory United States	9,264,128	1,012.00	1,980.01	38,698
3	Eagle - Microsoft NDv5, Xeon Platinum 8480C 480 2GHz, NVIDIA <mark>H100</mark> NVIDIA Infiniband NDR, Microsoft Azure Microsoft Azure United States	2,073,600	561.20	846.84	
4	Supercomputer Fugaku - Supercomputer Fugaku, A64FX 48C 2.20H2 RIKEN Center for Computational Science Japan	7,630,848	442.01	537.21	29,899
5	LUMI - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C <mark>2GHz, MD Instinc MI250X, S</mark> lingshot-11, HPE EuroHPC/CSC Finland	2,752,704	379.70	531.51	7,107

• existing serial SWs do not get (dramatically) faster on new CPUs

- existing serial SWs do not get (dramatically) faster on new CPUs
- just reducing instructions goes nowhere close to machine's potential performance

- existing serial SWs do not get (dramatically) faster on new CPUs
- just reducing instructions goes nowhere close to machine's potential performance
- you have to exploit *parallelism* of the machine
 - does it use multiple cores (and how the work is distributed)?
 - does it use SIMD instructions?
 - does it have good instruction level parallelism?

Example: matrix multiply

• how much can we improve this on a single machine?

```
void gemm(long M, long N, long K,
1
             float A[M][K], float B[K][N], float C[M][N]) {
2
     long i, j, k;
3
     for (i = 0; i < M; i++)
4
       for (j = 0; j < N; j++)
5
         for (k = 0; k < K; k++)
6
           C[i][j] += A[i][k] * B[k][j];
7
   }
8
```

1) Why Parallel Programming?

2 What Parallel Machines Look Like, and Where Performance Come From?

What a single multicore machine (node) looks like

board x2-8 /socket x2-64 core x2-8 SIMD (x8-32) virtual core

- SIMD : Single Instruction Multiple Data
- a single SIMD register holds many values
- a single instruction applies the same operation (e.g., add, multiply, etc.) on all data in a SIMD register
- a single core can execute multiple instructions in each cycle (ILP)

What a single multicore machine (node) looks like

board x2-8 /socket x2-64 core x2-8 SIMD (x8-32) virtual core

- SIMD : Single Instruction Multiple Data
- a single SIMD register holds many values
- a single instruction applies the same operation (e.g., add, multiply, etc.) on all data in a SIMD register
- a single core can execute multiple instructions in each cycle (ILP)

What a single multicore machine (node) looks like

- SIMD : Single Instruction Multiple Data
- a single SIMD register holds many values
- a single instruction applies the same operation (e.g., add, multiply, etc.) on all data in a SIMD register
- a single core can execute multiple instructions in each cycle (ILP)

What a machine looks like

- performance comes from *multiplying* parallelism of many levels
- parallelism (per CPU)

= SIMD width \times instructions/cycle \times cores

• in particular, peak FLOPS (per CPU)

= (2 × SIMD width) × FMA insts/cycle/core × freq × cores

- FMA: Fused Multiply Add (d = a * b + c)
- the first factor of 2 : multiply and add (each counted as a flop)

What a GPU looks like?

Streaming Multiprocessor

- a GPU consists of many *Streaming Multiprocessors (SM)*
- each SM is highly multithreaded and can interleave many warps
- each warp consists of 32 *CUDA threads*; in a single cycle, threads in a warp can execute the same single instruction

• despite very different terminologies, there are more commonalities than differnces

GPU	CPU
SM	core
multithreading in an SM	simultaneous multithreading
a warp (32 CUDA threads)	a thread executing SIMD instructions
	multiple instructions from a single thread

• there are significant differeces too, which we'll cover later

How much parallelism?

• Intel CPUs

arch model	SIMD	FMAs	freq	core	peak	TDP
	width	/cycle			GFLOPS	
	SP/DP	/core	GHz		SP/DP	W
Haswell E78880Lv3	8/4	2	2.0	18	1152/576	115
Broadwell 2699v4	8/4	2	2.2	22	1548/604	145
Cascade Lake 9282	16/8	2	2.6	56	9318/4659	400
Ice Lake 8368	16/8	2	2.4	38	5836/2918	270

• NVIDIA GPUs (numbers are without Tensor Cores)

acrh model	threads	FMAs	freq	SM	paek	TDP
	/warp	/cycle			GFLOPS	
	, –	/SM				
		SP/DP	GHz		SP/DP	W
Pascal P100	32	2/1	1.328	56	9519/4760	300
Volta v100	32	2/1	1.530	80	15667/7833	300
Ampere A100	32	2/1	1.410	108	19353/9676	400
Hopper н100	32	4/2	1.98?	132	66908/33454	700

Ice Lake 8368

- $= (2 \times 16)$ [flops/FMA insn]
- \times 2 [FMA insns/cycle/core]
- \times 2.4G [cycles/sec]
- \times 38 [cores]
- = 5836 GFLOPS

A100

- = (2 × 32) [flops/FMA insn]
- $\times~~2~[{\rm FMA~insns/cycle/SM}]$
- \times 1.41G [cycles/sec]
- \times 108 [SMs]
- = 19353 GFLOPS

NVIDIA: Tensor Cores

- performance shown so far is limited by the fact that a single (FMA) instruction can perform 2 flops (1 multiply + 1 add)
- Tensor Core, a special execution unit for a small matrix-multiply-add, changes that
- A100's each Tensor Core can do $C = A \times B + C$ (where $A: 4 \times 4, B: 4 \times 8$) per cycle ($A: 4 \times 4$ TF32, $B: 4 \times 8$ TF32, C and D are SP)

 $2 \times 4 \times 4 \times 8 = 256$ flops/cycle

• each SM of A100 GPU has 4 Tensor Cores, so a single A100 device can do

 $(2 \times 4 \times 4 \times 8)$ [flops/cycle]

- \times 1.41G [cycles/sec]
- $\times~4\times108$ [Tensor Cores]
- = 155934.72 GFLOPS

- processors' performance improvement is getting less and less "generic" or "transparent"
 - frequencey + instruction level parallelism
 - \rightarrow explicit parallelism (multicore/manycore)
 - \rightarrow special execution unit for macro operations (e.g., MMA)
 - \rightarrow application-specific instructions (?)
- performance is getting more and more dependent on programming

1 Why Parallel Programming?

2 What Parallel Machines Look Like, and Where Performance Come From?

- no matter how you program it, you want to maximally utilize all forms of parallelism
- "how" depends on devices and programming languages

from low level to high levels

- (CPU) OS-level threads
- (GPU) CUDA threads
- SPMD \approx the entire program runs with N threads
- parallel loops
- dynamically created tasks
- internally parallelized libraries (e.g., matrix operations)
- high-level languages executing pre-determined operations (e.g., matrix operations, map & reduce-like patterns, deep learning) in parallel

Language constructs for CPU SIMD

from low level to high levels

- assembly
- intrinsics
- vector types
- vectorized loops
- internally vectorized libraries (e.g., matrix operations)

This lecture is for ...

those who want to:

• have a first-hand experience in parallel and high performance programming (OpenMP, CUDA, SIMD, ...)

- have a first-hand experience in parallel and high performance programming (OpenMP, CUDA, SIMD, ...)
- know good tools to solve more complex problems in parallel (divide-and-conquer and task parallelism)

- have a first-hand experience in parallel and high performance programming (OpenMP, CUDA, SIMD, ...)
- know good tools to solve more complex problems in parallel (divide-and-conquer and task parallelism)
- understand when you can get "close-to-peak" CPU/GPU performance and how to get it (SIMD and instruction level parallelism)

- have a first-hand experience in parallel and high performance programming (OpenMP, CUDA, SIMD, ...)
- know good tools to solve more complex problems in parallel (divide-and-conquer and task parallelism)
- understand when you can get "close-to-peak" CPU/GPU performance and how to get it (SIMD and instruction level parallelism)
- learn many reasons why you don't get good parallel performance

- have a first-hand experience in parallel and high performance programming (OpenMP, CUDA, SIMD, ...)
- know good tools to solve more complex problems in parallel (divide-and-conquer and task parallelism)
- understand when you can get "close-to-peak" CPU/GPU performance and how to get it (SIMD and instruction level parallelism)
- learn many reasons why you don't get good parallel performance
- have a good understanding about caches and memory and why they matter so much for performance