Parallel and Distributed Programming
Introduction

Kenjiro Taura

1/22

Contents

@ Why Parallel Programming?

© What Parallel Machines Look Like, and Where Performance
Come From?

@ How to Program Parallel Machines?

2/22

@ Why Parallel Programming?

© What Parallel Machines Look Like, and Where Performance
Come From?

© How to Program Parallel Machines?

3/22

Why parallel?

e frequencies no longer increase (end of Dennard scaling)

Clock Frequency

3 8 g E

Frequency

Dennard scaling

source: http://cpudb.stanford.edu/ .

http://cpudb.stanford.edu/

Why parallel?

e frequencies no longer increase (end of Dennard scaling)

e techniques to increase performance (Instruction-Level
Parallelism, or ILP) of serial programs are increasingly
difficult to pay off (Pollack’s law)

Clock Frequency
10000

1000

Frequency

Dennard scaling

source: http://cpudb.stanford.edu/ .

http://cpudb.stanford.edu/

Why parallel?

e frequencies no longer increase (end of Dennard scaling)
e techniques to increase performance (Instruction-Level
Parallelism, or ILP) of serial programs are increasingly

difficult to pay off (Pollack’s law)
e multicore, manycore, and GPUs are in part response to it

have more transistors? = have more cores

Clock Frequency
10000

1000

Frequency

Dennard scaling

source: http://cpudb.stanford.edu/ .

http://cpudb.stanford.edu/

There are no serial machines any more

e virtually all CPUs are now multicore

@ high performance accelerators (GPUs, Al accelerators, etc.)
run at even low frequencies and have many more cores
(manycore)

5/22

Processors for supercomputers are ordinary,

perhaps even more so

https://www.top500.0rg/lists/top500/2024/06/

Rank System

1 Frontier - HPE C

H

5C/0ak Ridge National Laboratory

United States

2 Aurora - HPE Cr
Yoo CBU M
3
Micro t Azu
United States
4 Supercomputer Fugaku - ¢
reonnec
nputation
5

Finland

ercomputer Fugaku, A

), Fujitsu

Cores

8,699,904

9,264,128

2,073,600

7,630,848

2,752,704

Rmax
(PFlop/s)

1,206.00

1,012.00

561.20

442.01

379.70

Rpeak
(PFlop/s)

1,714.81

1,980.01

846.84

537.21

531.51

Power
(kW)

22,786

38,698

29,899

7.107

6/22

https://www.top500.org/lists/top500/2024/06/

Implication to software

e existing serial SWs do not get (dramatically) faster on new
CPUs

7/22

Implication to software

e existing serial SWs do not get (dramatically) faster on new
CPUs

@ just reducing instructions goes nowhere close to machine’s
potential performance

7/22

Implication to software

e existing serial SWs do not get (dramatically) faster on new
CPUs

@ just reducing instructions goes nowhere close to machine’s
potential performance

e you have to exploit parallelism of the machine

o does it use multiple cores (and how the work is distributed)?
e does it use SIMD instructions?
e does it have good instruction level parallelism?

7/22

Example: matrix multiply

e how much can we improve this on a single machine?

void gemm(long M, long N, long K,
float A[MI[K], float B[K][N], float C[M][N]) {
long i, j, k;
for (i = 0; i < M; i++)
for (j = 0; j < N; j++)
for (k = 0; k < K; k++)
CLil[j] += A[il1[k] * B[k1[jl;

(S R SN

® <

8/22

Contents

© What Parallel Machines Look Like, and Where Performance
Come From?

9/22

What a single multicore machine (node) looks like

x2-8 .:j""'%akl

<2-64 _:,»-'-"-7/socket

x2-8 {,,»-5-'* core
""7virtua1 core IMD (x8-32)

e SIMD : Single Instruction Multiple Data
e a single SIMD register holds many values

e a single instruction applies the same operation (e.g., add,
multiply, etc.) on all data in a SIMD register

@ a single core can execute multiple instructions in each cycle
(ILP)

10/ 22

What a single multicore machine (node) looks like

x2-8 {I""-@

<2-64 _:,»-'-"-7/socket

x2-8 {,,»-5-'* core
""7virtua1 core IMD (x8-32)

e SIMD : Single Instruction Multiple Data
e a single SIMD register holds many values

e a single instruction applies the same operation (e.g., add,
multiply, etc.) on all data in a SIMD register

@ a single core can execute multiple instructions in each cycle
(ILP)

10/ 22

What a single multicore machine (node) looks like

x2-8 {I""-@

<2-64 _:,»-'-"-7/socket

x2-8 {,,»-5-'* core
""7virtua1 core IMD (x8-32)

e SIMD : Single Instruction Multiple Data
e a single SIMD register holds many values

e a single instruction applies the same operation (e.g., add,
multiply, etc.) on all data in a SIMD register

@ a single core can execute multiple instructions in each cycle
(ILP)

10/ 22

What a machine looks like

X2-8 ¢ %ﬂ\(

x2-64 7/socket
core

X287
7/ virtual core \SSIMD (x8-32)

e performance comes from multiplying parallelism of many
levels

e parallelism (per CPU)
= SIMD width X instructions/cycle x cores
e in particular, peak FLOPS (per CPU)
= (2 x SIMD width) x FMA insts/cycle/core x freq x cores
o FMA: Fused Multiply Add (d =ax*b+ c)
e the first factor of 2 : multiply and add (each counted as a
flop)

11/22

What a GPU looks like?

Streaming Multiprocessor

Toxture L1 Gacho.

64K Shared Momory

e a GPU consists of many Streaming Multiprocessors (SM)

e cach SM is highly multithreaded and can interleave many
warps

e each warp consists of 32 CUDA threads; in a single cycle,

threads in a warp can execute the same single instruction
12/22

What a GPU looks like?

o despite very different terminologies, there are more
commonalities than differnces

GPU CPU
SM core
multithreading in an SM simultaneous multithreading

a warp (32 CUDA threads) a thread executing SIMD instructions
multiple instructions from a single thread

e there are significant differeces too, which we’ll cover later

13 /22

How much parallelism?

o Intel CPUs

arch model SIMD | FMAs | freq | core peak TDP
width | /eycle GFLOPS
SP/DP | /core | GHz SP/DP W
Haswell e7sssoLvs 8/4 2 2.0 18 1152/576 | 115
Broadwell 2699va 8/4 2 2.2 22 1548/604 145
Cascade Lake 9282 | 16/8 2 2.6 | 56 | 9318/4659 | 400
Ice Lake s36s 16/8 2 2.4 38 | 5836/2918 | 270
e NVIDIA GPUs (numbers are without Tensor Cores)
acrh model | threads | FMAs | freq | SM paek TDP
/warp | /cycle GFLOPS
/SM
SP/DP | GHz SP/DP W
Pascal p1oo 32 2/1 1.328 | 56 9519/4760 300
Volta vioo 32 2/1 1.530 | 80 15667/7833 300
Ampere a100 32 2/1 1.410 | 108 | 19353/9676 400
Hopper Hi00 32 4/2 1.987 | 132 | 66908/33454 | 700

14 /22

Peak (SP) FLOPS

X X X

Ice Lake 8368

(2 x 16) [flops/FMA insn]
2 [FMA insns/cycle/core]
2.4G [cycles/sec]

38 [cores]

5836 GFLOPS

X X X

A100

(2 x 32) [flops/FMA insn)]
2 [FMA insns/cycle/SM]
1.41G [cycles/sec]

108 [SMs]|

19353 GFLOPS

15 /22

NVIDIA: Tensor Cores

e performance shown so far is limited by the fact that a single
(FMA) instruction can perform 2 flops (1 multiply + 1 add)

e Tensor Core, a special execution unit for a small
matrix-multiply-add, changes that

@ A100’s each Tensor Core can do C'= A x B + C' (where
A:4x4, B:4x8)percycle (A:4x4TF32, B:4x8
TF32, C' and D are SP)

2 x 4 x 4 x 8 =256 flops/cycle
e cach SM of A100 GPU has 4 Tensor Cores, so a single A100

device can do

(2 x 4 x 4 x 8) [flops/cycle]
1.41G [cycles/sec]

4 x 108 [Tensor Cores]
155934.72 GFLOPS

X X

16 /22

https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet-nvidia-us-2188504-web.pdf

Trends

@ processors’ performance improvement is getting less and less
“generic” or “transparent”
e frequencey + instruction level parallelism
— explicit parallelism (multicore/manycore)
— special execution unit for macro operations (e.g., MMA)
— application-specific instructions (7)

e performance is getting more and more dependent on
programming

17 /22

@ Why Parallel Programming?

© What Parallel Machines Look Like, and Where Performance
Come From?

@ How to Program Parallel Machines?

18 /22

So how to program it?

e no matter how you program it, you want to maximally utilize
all forms of parallelism

@ “how” depends on devices and programming languages

19 /22

Language constructs for multiple cores / GPUs

from low level to high levels
e (CPU) OS-level threads
e (GPU) CUDA threads
@ SPMD = the entire program runs with N threads
o parallel loops
e dynamically created tasks
e internally parallelized libraries (e.g., matrix operations)

@ high-level languages executing pre-determined operations
(e.g., matrix operations, map & reduce-like patterns, deep
learning) in parallel

20 /22

Language constructs for CPU SIMD

from low level to high levels
e assembly
@ intrinsics
@ vector types
e vectorized loops

e internally vectorized libraries (e.g., matrix operations)

21 /22

This lecture is for . ..

those who want to:

e have a first-hand experience in parallel and high performance
programming (OpenMP, CUDA, SIMD, ...)

22 /22

This lecture is for . ..

those who want to:

e have a first-hand experience in parallel and high performance
programming (OpenMP, CUDA, SIMD, ...)

@ know good tools to solve more complex problems in parallel
(divide-and-conquer and task parallelism)

22 /22

This lecture is for . ..

those who want to:

e have a first-hand experience in parallel and high performance
programming (OpenMP, CUDA, SIMD, ...)

@ know good tools to solve more complex problems in parallel
(divide-and-conquer and task parallelism)

e understand when you can get “close-to-peak” CPU/GPU
performance and how to get it (SIMD and instruction level
parallelism)

22 /22

This lecture is for . ..

those who want to:

e have a first-hand experience in parallel and high performance
programming (OpenMP, CUDA, SIMD, ...)

@ know good tools to solve more complex problems in parallel
(divide-and-conquer and task parallelism)

e understand when you can get “close-to-peak” CPU/GPU
performance and how to get it (SIMD and instruction level
parallelism)

@ learn many reasons why you don’t get good parallel
performance

22 /22

This lecture is for . ..

those who want to:

[+

have a first-hand experience in parallel and high performance
programming (OpenMP, CUDA, SIMD, ...)

know good tools to solve more complex problems in parallel
(divide-and-conquer and task parallelism)

understand when you can get “close-to-peak” CPU/GPU
performance and how to get it (SIMD and instruction level
parallelism)

learn many reasons why you don’t get good parallel
performance

have a good understanding about caches and memory and
why they matter so much for performance

22 /22

	Why Parallel Programming?
	What Parallel Machines Look Like, and Where Performance Come From?
	How to Program Parallel Machines?

