
Parallel and Distributed Programming

Introduction

Kenjiro Taura

1 / 22



Contents

1 Why Parallel Programming?

2 What Parallel Machines Look Like, and Where Performance
Come From?

3 How to Program Parallel Machines?

2 / 22



Contents

1 Why Parallel Programming?

2 What Parallel Machines Look Like, and Where Performance
Come From?

3 How to Program Parallel Machines?

3 / 22



Why parallel?

frequencies no longer increase (end of Dennard scaling)

techniques to increase performance (Instruction-Level
Parallelism, or ILP) of serial programs are increasingly
difficult to pay off (Pollack’s law)
multicore, manycore, and GPUs are in part response to it

have more transistors? ⇒ have more cores

Dennard scaling

Fr
eq

ue
nc

y

source: http://cpudb.stanford.edu/
4 / 22

http://cpudb.stanford.edu/


Why parallel?

frequencies no longer increase (end of Dennard scaling)
techniques to increase performance (Instruction-Level
Parallelism, or ILP) of serial programs are increasingly
difficult to pay off (Pollack’s law)

multicore, manycore, and GPUs are in part response to it

have more transistors? ⇒ have more cores

Dennard scaling

Fr
eq

ue
nc

y

source: http://cpudb.stanford.edu/
4 / 22

http://cpudb.stanford.edu/


Why parallel?

frequencies no longer increase (end of Dennard scaling)
techniques to increase performance (Instruction-Level
Parallelism, or ILP) of serial programs are increasingly
difficult to pay off (Pollack’s law)
multicore, manycore, and GPUs are in part response to it

have more transistors? ⇒ have more cores

Dennard scaling

Fr
eq

ue
nc

y

source: http://cpudb.stanford.edu/
4 / 22

http://cpudb.stanford.edu/


There are no serial machines any more

virtually all CPUs are now multicore

high performance accelerators (GPUs, AI accelerators, etc.)
run at even low frequencies and have many more cores
(manycore)

5 / 22



Processors for supercomputers are ordinary,

perhaps even more so

https://www.top500.org/lists/top500/2024/06/

6 / 22

https://www.top500.org/lists/top500/2024/06/


Implication to software

existing serial SWs do not get (dramatically) faster on new
CPUs

just reducing instructions goes nowhere close to machine’s
potential performance

you have to exploit parallelism of the machine

does it use multiple cores (and how the work is distributed)?
does it use SIMD instructions?
does it have good instruction level parallelism?

7 / 22



Implication to software

existing serial SWs do not get (dramatically) faster on new
CPUs

just reducing instructions goes nowhere close to machine’s
potential performance

you have to exploit parallelism of the machine

does it use multiple cores (and how the work is distributed)?
does it use SIMD instructions?
does it have good instruction level parallelism?

7 / 22



Implication to software

existing serial SWs do not get (dramatically) faster on new
CPUs

just reducing instructions goes nowhere close to machine’s
potential performance

you have to exploit parallelism of the machine

does it use multiple cores (and how the work is distributed)?
does it use SIMD instructions?
does it have good instruction level parallelism?

7 / 22



Example: matrix multiply

how much can we improve this on a single machine?�
1 void gemm(long M, long N, long K,

2 float A[M][K], float B[K][N], float C[M][N]) {

3 long i, j, k;

4 for (i = 0; i < M; i++)

5 for (j = 0; j < N; j++)

6 for (k = 0; k < K; k++)

7 C[i][j] += A[i][k] * B[k][j];

8 }

8 / 22



Contents

1 Why Parallel Programming?

2 What Parallel Machines Look Like, and Where Performance
Come From?

3 How to Program Parallel Machines?

9 / 22



What a single multicore machine (node) looks like

socket

virtual core
core
socket
boardx2-8

x2-64
x2-8 SIMD (x8-32)}

SIMD : Single Instruction Multiple Data

a single SIMD register holds many values

a single instruction applies the same operation (e.g., add,
multiply, etc.) on all data in a SIMD register

a single core can execute multiple instructions in each cycle
(ILP)

10 / 22



What a single multicore machine (node) looks like

CPU (chip)

virtual core
core
socket
boardx2-8

x2-64
x2-8 SIMD (x8-32)}

SIMD : Single Instruction Multiple Data

a single SIMD register holds many values

a single instruction applies the same operation (e.g., add,
multiply, etc.) on all data in a SIMD register

a single core can execute multiple instructions in each cycle
(ILP)

10 / 22



What a single multicore machine (node) looks like

corevirtual core

virtual core
core
socket
boardx2-8

x2-64
x2-8 SIMD (x8-32)}

SIMD : Single Instruction Multiple Data

a single SIMD register holds many values

a single instruction applies the same operation (e.g., add,
multiply, etc.) on all data in a SIMD register

a single core can execute multiple instructions in each cycle
(ILP)

10 / 22



What a machine looks like

memory

controller L3 cache

hardware thread
(virtual core, CPU)

(physical) core

L2 cache
L1 cache

chip (socket, node, CPU)

interconnect

virtual core
core

socket
boardx2-8

x2-64

x2-8 SIMD (x8-32)}
performance comes from multiplying parallelism of many
levels

parallelism (per CPU)

= SIMD width × instructions/cycle × cores

in particular, peak FLOPS (per CPU)

= (2 × SIMD width) × FMA insts/cycle/core × freq × cores

FMA: Fused Multiply Add (d = a ∗ b+ c)

the first factor of 2 : multiply and add (each counted as a
flop)

11 / 22



What a GPU looks like?

Streaming Multiprocessor

a GPU consists of many Streaming Multiprocessors (SM)

each SM is highly multithreaded and can interleave many
warps

each warp consists of 32 CUDA threads; in a single cycle,
threads in a warp can execute the same single instruction

12 / 22



What a GPU looks like?

despite very different terminologies, there are more
commonalities than differnces

GPU CPU
SM core

multithreading in an SM simultaneous multithreading
a warp (32 CUDA threads) a thread executing SIMD instructions

multiple instructions from a single thread

there are significant differeces too, which we’ll cover later

13 / 22



How much parallelism?

Intel CPUs
arch model SIMD FMAs freq core peak TDP

width /cycle GFLOPS
SP/DP /core GHz SP/DP W

Haswell E78880Lv3 8/4 2 2.0 18 1152/576 115
Broadwell 2699v4 8/4 2 2.2 22 1548/604 145
Cascade Lake 9282 16/8 2 2.6 56 9318/4659 400

Ice Lake 8368 16/8 2 2.4 38 5836/2918 270

NVIDIA GPUs (numbers are without Tensor Cores)
acrh model threads FMAs freq SM paek TDP

/warp /cycle GFLOPS
/SM

SP/DP GHz SP/DP W
Pascal P100 32 2/1 1.328 56 9519/4760 300
Volta V100 32 2/1 1.530 80 15667/7833 300

Ampere A100 32 2/1 1.410 108 19353/9676 400
Hopper H100 32 4/2 1.98? 132 66908/33454 700

14 / 22



Peak (SP) FLOPS

Ice Lake 8368

= (2× 16) [flops/FMA insn]

× 2 [FMA insns/cycle/core]

× 2.4G [cycles/sec]

× 38 [cores]

= 5836 GFLOPS

A100

= (2× 32) [flops/FMA insn]

× 2 [FMA insns/cycle/SM]

× 1.41G [cycles/sec]

× 108 [SMs]

= 19353 GFLOPS

15 / 22



NVIDIA: Tensor Cores

performance shown so far is limited by the fact that a single
(FMA) instruction can perform 2 flops (1 multiply + 1 add)
Tensor Core, a special execution unit for a small
matrix-multiply-add, changes that
A100’s each Tensor Core can do C = A× B + C (where
A : 4× 4, B : 4× 8) per cycle (A : 4× 4 TF32, B : 4× 8
TF32, C and D are SP)

2× 4× 4× 8 = 256 flops/cycle

each SM of A100 GPU has 4 Tensor Cores, so a single A100
device can do

(2× 4× 4× 8) [flops/cycle]

× 1.41G [cycles/sec]

× 4× 108 [Tensor Cores]

= 155934.72 GFLOPS
16 / 22

https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet-nvidia-us-2188504-web.pdf


Trends

processors’ performance improvement is getting less and less
“generic” or “transparent”

frequencey + instruction level parallelism
→ explicit parallelism (multicore/manycore)
→ special execution unit for macro operations (e.g., MMA)
→ application-specific instructions (?)

performance is getting more and more dependent on
programming

17 / 22



Contents

1 Why Parallel Programming?

2 What Parallel Machines Look Like, and Where Performance
Come From?

3 How to Program Parallel Machines?

18 / 22



So how to program it?

no matter how you program it, you want to maximally utilize
all forms of parallelism

“how” depends on devices and programming languages

19 / 22



Language constructs for multiple cores / GPUs

from low level to high levels

(CPU) OS-level threads

(GPU) CUDA threads

SPMD ≈ the entire program runs with N threads

parallel loops

dynamically created tasks

internally parallelized libraries (e.g., matrix operations)

high-level languages executing pre-determined operations
(e.g., matrix operations, map & reduce-like patterns, deep
learning) in parallel

20 / 22



Language constructs for CPU SIMD

from low level to high levels

assembly

intrinsics

vector types

vectorized loops

internally vectorized libraries (e.g., matrix operations)

21 / 22



This lecture is for . . .

those who want to:

have a first-hand experience in parallel and high performance
programming (OpenMP, CUDA, SIMD, . . . )

know good tools to solve more complex problems in parallel
(divide-and-conquer and task parallelism)

understand when you can get “close-to-peak” CPU/GPU
performance and how to get it (SIMD and instruction level
parallelism)

learn many reasons why you don’t get good parallel
performance

have a good understanding about caches and memory and
why they matter so much for performance

22 / 22



This lecture is for . . .

those who want to:

have a first-hand experience in parallel and high performance
programming (OpenMP, CUDA, SIMD, . . . )

know good tools to solve more complex problems in parallel
(divide-and-conquer and task parallelism)

understand when you can get “close-to-peak” CPU/GPU
performance and how to get it (SIMD and instruction level
parallelism)

learn many reasons why you don’t get good parallel
performance

have a good understanding about caches and memory and
why they matter so much for performance

22 / 22



This lecture is for . . .

those who want to:

have a first-hand experience in parallel and high performance
programming (OpenMP, CUDA, SIMD, . . . )

know good tools to solve more complex problems in parallel
(divide-and-conquer and task parallelism)

understand when you can get “close-to-peak” CPU/GPU
performance and how to get it (SIMD and instruction level
parallelism)

learn many reasons why you don’t get good parallel
performance

have a good understanding about caches and memory and
why they matter so much for performance

22 / 22



This lecture is for . . .

those who want to:

have a first-hand experience in parallel and high performance
programming (OpenMP, CUDA, SIMD, . . . )

know good tools to solve more complex problems in parallel
(divide-and-conquer and task parallelism)

understand when you can get “close-to-peak” CPU/GPU
performance and how to get it (SIMD and instruction level
parallelism)

learn many reasons why you don’t get good parallel
performance

have a good understanding about caches and memory and
why they matter so much for performance

22 / 22



This lecture is for . . .

those who want to:

have a first-hand experience in parallel and high performance
programming (OpenMP, CUDA, SIMD, . . . )

know good tools to solve more complex problems in parallel
(divide-and-conquer and task parallelism)

understand when you can get “close-to-peak” CPU/GPU
performance and how to get it (SIMD and instruction level
parallelism)

learn many reasons why you don’t get good parallel
performance

have a good understanding about caches and memory and
why they matter so much for performance

22 / 22


	Why Parallel Programming?
	What Parallel Machines Look Like, and Where Performance Come From?
	How to Program Parallel Machines?

