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Goals

learn:

the power of divide and conquer paradigm, combined with
task parallelism, with concrete examples,

how to write task parallel programs (OpenMP task)

and how to reason about the speedup of task parallel
programs

work
critical path length
Greedy Scheduler theorem
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Divide and conquer algorithms

“Divide and conquer” is the single most important design
paradigm of algorithms�

1 answer solve(D) {
2 if ( trivial (D)) {
3 return trivially solve (D) ;
4 } else {
5 D1, . . . , Dk = divide(D); // divide the problem into sub problems
6 a1 = solve(D1) ; . . . ; ak = solve(Dk) ; // solve them
7 return combine(a1, ..., ak) ; // combine sub answers
8 }
9 }

D

D1 D2 Dk

D11 D12 D21 D22 Dk1 Dk2

...

...

... ... ... ... ... ... ... ... ... ... ... ...
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Benefits of “divide and conquer” thinking

Divide and conquer . . .

often helps you come up with an algorithm

is easy to program, with recursions

is often easy to parallelize, once you have a recursive
formulation and a parallel programming language that
support it (task parallelism)

often has a good locality of reference, both in serial and
parallel execution
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Some examples

quick sort, merge sort

matrix multiply, LU factorization, eigenvalue

FFT, polynomial multiply, big int multiply

maximum segment sum, find median

k-d tree

. . .
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k-d tree

A data structure to hierarchically organize points (to
facilitate “nearest neighbor” or “proxymity” searches)
(usually in 2D or 3D space)
Each node represents a rectangle region
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k-d tree construction

Input:

P : an array of points (no
particular order)
R: a bounding box of P

Output:

t: a k-d tree for P

Properties of k-d trees

a leaf has ≤ c points
an internal node has one point of
its own plus one or two children
an internal node is split into two
subspaces through its point
axis along which to split nodes
are chosen cyclically (first along
x-axis, then along y-axis, and so
on)
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How to build a k-d tree

Possible strategies:

an insertion-based method

define a method to add a single point into a tree
start from an empty tree and add all points into it

a divide and conquer method

12 / 84



How to build a k-d tree

Possible strategies:

an insertion-based method

define a method to add a single point into a tree
start from an empty tree and add all points into it

a divide and conquer method

12 / 84



divide and conquer method

to build a tree for a
rectangle R and points P in
R,

choose a point p ∈ P
through which to split R,
and

partition P into
P0 + {p}+ P1

let’s say we split along
x-axis. then
P0 : points whose x
coodinate < p’s
P1 : points whose x
coodinate ≥ p’s (except
p)
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divide and conquer method�
1 /∗ build a k−d tree for a set of points P in a rectangular region R and return
2 the root of the tree . the node is at depth, so it should split along
3 (depth % D)th axis ∗/
4 build(P, R, depth) {

5 if (|P| == 0) {

6 return 0; /∗ empty ∗/
7 } else if (|P| <= threshold) {

8 /∗ small enough; leaf ∗/
9 return make_leaf(P, R, depth);

10 } else {

11 /∗ find a point whose coordinate to split is near the median ∗/
12 s = find median(P, depth % D);

13 /∗ split R into two sub−rectangles ∗/
14 R0,R1 = split rect(R, depth % D, s.pos[depth % D]);

15 /∗ partition P by their coodinate lower/higher than p’s coordinate ∗/
16 P0,P1 = partition(P - { p }, depth % D, s.pos[depth % D]);

17 /∗ build a tree for each rectangle ∗/
18 n0 = build(P0, R0, depth + 1);

19 n1 = build(P1, R1, depth + 1);

20 /∗ return a node having n0 and n1 as its children ∗/
21 return make_node(p, n0, n1, depth);

22 }

23 }
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Notes on subprocedures

s = find median(P , d)

find a point ∈ P whose dth coordinate is (close to) the
median value among all points in P
sample a few points and choose the median ⇒ O(1)

R0, R1 = split rect(R, d, c)

split a rectangular region R by a (hyper-)plane “dth
coordinate = c”
just make two rectangular regions ⇒ O(1)

P0, P1 = partition(P , d, c)

partition a set of points P into two subsets P0 (dth
coordinate < c) and P1 (dth coordinate ≥ c)
⇒ O(|P |)
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Parallelizing divide and conquer

Divide and conquer algorithms are easy to parallelize if the
programming language/library supports asynchronous
recursive calls (task parallel systems)

OpenMP task constructs (#pragma omp parallel, master,

task, taskwait)
Intel Threading Building Block (TBB)
Cilk, CilkPlus
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Parallelizing k-d tree construction with tasks

it’s as simple as doing two recursions in parallel!

e.g., with OpenMP tasks�
1 build(P, R, depth) {

2 if (|P| == 0) {

3 return 0; /∗ empty ∗/
4 } else if (|P| <= threshold) {

5 return make_leaf(P, R, depth);

6 } else {

7 s = find_median(P, depth % D);

8 R0,R1 = split_rect(R, depth % D, s.pos[depth % D]);

9 P0,P1 = partition(P - { p }, depth % D, s.pos[depth % D]);

10 #pragma omp task shared(n0)

11 n0 = build(P0, R0, depth + 1);

12 #pragma omp task shared(n1)

13 n1 = build(P1, R1, depth + 1);

14 #pragma omp taskwait

15 return make_node(p, n0, n1, depth);

16 }

17 }

do you want to parallelize it with only parallel loops?
18 / 84
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Reasoning about speedup

so you parallelized your program, you now hope to get some
speedup on parallel machines!

PROBLEM: how to reason about the execution time (thus
speedup) of the program with P processors

ANSWER: get the work and the critical path length of the
computation
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Work and critical path length

Work: = the total amount of work of the computation

= the time it takes in a serial execution

Critical path length: = the maximum length of dependent
chain of computation

a more precise definition follows, with computational DAGs

22 / 84



Computational DAGs

The DAG of a computation is a directed
acyclic graph in which:

a node = an interval of computation
free of task parallel primitives

i.e. a node starts and ends by a task
parallel primitive
we assume a single node is executed
non-preemptively

an edge = a dependency between two
nodes, of three types:

parent → created child
child → waiting parent
a node → the next node in the same
task

�
1 main() {

2 A();

3 create_task B();

4 C();

5 wait(); // wait for B
6 D();

7 }

A

B C

D

c
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A computational DAG and critical path length

Consider each node is augmented with
a time for a processor to execute it
(the node’s execution time)

Define the length of a path to be the
sum of execution time of the nodes on
the path

A

B C

D

c

Given a computational DAG,
critical path length = the length of the longest paths from
the start node to the end node in the DAG

(we often say critical path to in fact mean its length)
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A computational DAG and work

Work, too, can be elegantly defined in
light of computational DAGs

A

B C

D

c

Given a computational DAG,
work = the sum of lengths of all nodes
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What do they intuitively mean?

The critical path length represents the
“ideal” execution time with infinitely
many processors

i.e., each node is executed immediately
after all its predecessors have finished

We thus often denote it by T∞

Analogously, we often denote work by T1

T1 = work, T∞ = critical path

A

B C

D

c

critical path length

A

B C

D

c

work
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Why are they important?

Now you understood what the critical path is

But why is it a good tool to understand speedup?

QUESTION: Specifically, what does it tell us about
performance or speedup on, say, my 64 core machines?

ANSWER: A beautiful theorem (greedy scheduler theorem)
gives us an answer
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The greedy scheduler theorem

Assume:
you have P processors
they are greedy, in the sense that a processor is always busy
on a task whenever there is any runnable task in the entire
system
an execution time of a node does not depend on which
processor executed it

Theorem: given a computational DAG of:
work T1 and
critical path T∞,

the execution time with P processors, TP , satisfies

TP ≤ T1 − T∞

P
+ T∞

in practice you remember a simpler form:

TP ≤ T1

P
+ T∞
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The greedy scheduler theorem

it is now a common sense in parallel computing, but the root
of the idea seems:
Richard Brent. The Parallel Evaluation of General Arith-
metic Expressions. Journal of the ACM 21(2). pp201-206.
1974
Derek Eager, John Zahorjan, and Edward Lazowska.
Speedup versus efficiency in parallel systems. IEEE Trans-
actions on Computers 38(3). pp408-423. 1989

People attribute it to Brent and call it Brent’s theorem

Proof is a good exercise for you
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I’ll repeat! Remember it!

TP ≤ T1
P

+ T∞
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A few facts to remember about T1 and T∞

Consider the execution time with P processors (TP )

there are two obvious lower bounds

TP ≥ T1
P

TP ≥ T∞

or more simply,

TP ≥ max(
T1

P
, T∞)

what a greedy scheduler achieves is

TP ≤ sum(
T1

P
, T∞)

two memorable facts

“the sum of two lower bounds is an upper bound”
any greedy scheduler is within a factor of two of the optimal
scheduler (下手な考え休むに似たり?)
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A few facts to remember about T1 and T∞

to get good (nearly perfect) speedup, we wish to have

T1

P
≫ T∞

or equivalently,
T1

T∞
≫ P

we can consider T1

T∞
to be the average parallelism (the

speedup we would get with infinitely many processors)

we like to make the average parallelism large enough
compared to the actual number of processors
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Another way to remember the theorem

assume a simpler caase in which the entire computation
(which amounts to T1) consists of two parts,

1 one completely serial (which amounts to T∞), and
2 the other completely parallelizable (which amounts to

(T1 − T∞))

T∞

T1

perfectly parallelizable

not parallelizable at all

trivially, any greedy scheduler achieves

TP ≤ T1 − T∞

P
+ T∞

many people remember this as Amdahl’s law

the greedy scheduler theorem states that the same inequality
holds more generally, for any computational DAG 34 / 84



Takeaway message

Suffer from low parallelism? ⇒ try to
shorten its critical path

in contrast, people are tempted to get more speedup by creating
more and more tasks; they are useless unless doing so shortens
the critical path

my program suffers
create more tasks (and T∞ may be the same)

shorten critical path
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What makes T∞ so useful?

T∞ is:

a single global metric (just as the work is)

not something that fluctuates over time (cf. the number of
tasks)

inherent to the algorithm, independent from the scheduler

not something that depends on schedulers (cf. the number of
tasks)

connected to execution time with P processors in a beautiful
way (TP ≤ T1/P + T∞)

easy to estimate/calculate (like the ordinary time complexity
of serial programs)
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Calculating work and critical path

for recursive procedures, using recurrent equations is often a
good strategy
e.g., if we have

�
1 f(n) {

2 if (n == 1) { trivial(n); /∗ assume O(1) ∗/ }

3 else {

4 g(n);

5 create_task f(n/3);

6 f(2*n/3);

7 wait();

8 }

9 }

g(n)

f(2n/3)f(n/3)

f(n) =

then
(work) Wf(n) ≤ Wg(n) +Wf(n/3) +Wf(2n/3)
(critical path) Cf(n) ≤ Cg(n) + max{Cf(n/3), Cf(2n/3)}

we apply this for programs we have seen
38 / 84



Work of k-d tree construction�
1 build(P, R, depth) {

2 if (|P| == 0) {

3 return 0; /∗ empty ∗/
4 } else if (|P| <= threshold) {

5 return make_leaf(P, R, depth);

6 } else {

7 s = find_median(P, depth % D);

8 R0,R1 = split_rect(R, depth % D, s.pos[depth % D]);

9 P0,P1 = partition(P - { p }, depth % D, s.pos[depth % D]);

10 n0 = create task build(P0, R0, depth + 1);

11 n1 = build(P1, R1, depth + 1);

12 wait();

13 return make_node(p, n0, n1, depth);

14 } }

recall that partition takes time proportional to n (the
number of points). thus,

Wbuild(n) ≈ 2Wbuild(n/2) + Θ(n)

omitting math,

∴ Wbuild(n) ∈ Θ(n log n) 39 / 84



Remark

the argument above is crude, as n points are not always split
into two sets of equal sizes

yet, the Θ(n log n) result is valid, as long as a split is
guaranteed to be “never too unbalanced” (i.e., there is a
constant α <, s.t. each child gets ≤ αn points)
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Critical path�
1 build(P, R, depth) {

2 if (|P| == 0) {

3 return 0; /∗ empty ∗/
4 } else if (|P| <= threshold) {

5 return make_leaf(P, R, depth);

6 } else {

7 s = find_median(P, depth % D);

8 R0,R1 = split_rect(R, depth % D, s.pos[depth % D]);

9 P0,P1 = partition(P - { p }, depth % D, s.pos[depth % D]);

10 n0 = create task build(P0, R0, depth + 1);

11 n1 = build(P1, R1, depth + 1);

12 wait();

13 return make_node(p, n0, n1, depth);

14 } }

Cbuild(n) ≈ Cbuild(n/2) + Θ(n)

omitting math,
∴ Cbuild(n) ∈ Θ(n)
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Speedup of k-d tree construction

Now we have:
Wbuild(n) ∈ Θ(n log n),
Cbuild(n) ∈ Θ(n).

⇒
T1

T∞
∈ Θ(log n)

not satisfactory in practice

42 / 84



What the analysis tells us

the expected speedup, Θ(log n), is not satisfactory

to improve, shorten its critical path Θ(n), to o(n)

where you should improve? the reason for the Θ(n) critical
path is partition; we should parallelize partition

P

P0

partition

pivot

P1p
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Merge sort

Input:

A: an array

Output:

B: a sorted array

Note: the result could be returned either in place or in a
separate array. Assume it is “in place” in the following.
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Merge sort : serial code�
1 /∗ sort a..a end and put the result into
2 (i) a ( if dest = 0)
3 ( ii ) t ( if dest = 1) ∗/
4 void ms(elem * a, elem * a_end,

5 elem * t, int dest) {

6 long n = a_end - a;

7 if (n == 1) {

8 if (dest) t[0] = a[0];

9 } else {

10 /∗ split the array into two ∗/
11 long nh = n / 2;

12 elem * c = a + nh;

13 /∗ sort 1st half ∗/
14 ms(a, c, t, 1 - dest);

15 /∗ sort 2nd half ∗/
16 ms(c, a_end, t + nh, 1 - dest);

17 elem * s = (dest ? a : t);

18 elem * d = (dest ? t : a);

19 /∗ merge them ∗/
20 merge(s, s + nh,

21 s + nh, s + n, d);

22 }

23 }

�
1 /∗ merge a beg ... a end
2 and b beg ... b end
3 into c ∗/
4 void

5 merge(elem * a, elem * a_end,

6 elem * b, elem * b_end,

7 elem * c) {

8 elem * p = a, * q = b, * r = c;

9 while (p < a_end && q < b_end) {

10 if (*p < *q) { *r++ = *p++; }

11 else { *r++ = *q++; }

12 }

13 while (p < a_end) *r++ = *p++;

14 while (q < b_end) *r++ = *q++;

15 }

note: as always, actually
switch to serial sort below a
threshold (not shown in the
code above)
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Merge sort : parallelization
�

1 void ms(elem * a, elem * a_end,

2 elem * t, int dest) {

3 long n = a_end - a;

4 if (n == 1) {

5 if (dest) t[0] = a[0];

6 } else {

7 /∗ split the array into two ∗/
8 long nh = n / 2;

9 elem * c = a + nh;

10 /∗ sort 1st half ∗/
11 create task ms(a, c, t, 1 - dest);

12 /∗ sort 2nd half ∗/
13 ms(c, a_end, t + nh, 1 - dest);

14 wait();

15 elem * s = (dest ? a : t);

16 elem * d = (dest ? t : a);

17 /∗ merge them ∗/
18 merge(s, s + nh,

19 s + nh, s + n, d);

20 }

21 }

Will we get “good
enough” speedup?
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Work of merge sort
�

1 void ms(elem * a, elem * a_end,

2 elem * t, int dest) {

3 long n = a_end - a;

4 if (n == 1) {

5 if (dest) t[0] = a[0];

6 } else {

7 /∗ split the array into two ∗/
8 long nh = n / 2;

9 elem * c = a + nh;

10 /∗ sort 1st half ∗/
11 create task ms(a, c, t, 1 - dest);

12 /∗ sort 2nd half ∗/
13 ms(c, a_end, t + nh, 1 - dest);

14 wait();

15 elem * s = (dest ? a : t);

16 elem * d = (dest ? t : a);

17 /∗ merge them ∗/
18 merge(s, s + nh,

19 s + nh, s + n, d);

20 }

21 }

Wms(n) = 2Wms(n/2) +Wmerge(n),
Wmerge(n) ∈ Θ(n).

∴ Wms(n) ∈ Θ(n log n)
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Critical path of merge sort
�

1 void ms(elem * a, elem * a_end,

2 elem * t, int dest) {

3 long n = a_end - a;

4 if (n == 1) {

5 if (dest) t[0] = a[0];

6 } else {

7 /∗ split the array into two ∗/
8 long nh = n / 2;

9 elem * c = a + nh;

10 /∗ sort 1st half ∗/
11 create task ms(a, c, t, 1 - dest);

12 /∗ sort 2nd half ∗/
13 ms(c, a_end, t + nh, 1 - dest);

14 wait();

15 elem * s = (dest ? a : t);

16 elem * d = (dest ? t : a);

17 /∗ merge them ∗/
18 merge(s, s + nh,

19 s + nh, s + n, d);

20 }

21 }

Cms(n) = Cms(n/2) + Cmerge(n),
Cmerge(n) ∈ Θ(n)

∴ Cms(n) ∈ Θ(n)
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Speedup of merge sort

T1 = Wms(n) ∈ Θ(n log n),
T∞ = Cms(n) ∈ Θ(n).

the average parallelism

T1/T∞ ∈ Θ(log n).
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How (serial) merge works

�
1 /∗ merge a beg ... a end
2 and b beg ... b end
3 into c ∗/
4 void

5 merge(elem * a, elem * a_end,

6 elem * b, elem * b_end,

7 elem * c) {

8 elem * p = a, * q = b, * r = c;

9 while (p < a_end && q < b_end) {

10 if (*p < *q) { *r++ = *p++; }

11 else { *r++ = *q++; }

12 }

13 while (p < a_end) *r++ = *p++;

14 while (q < b_end) *r++ = *q++;

15 }

r

already merged

p q

Looks very serial . . .
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How to parallelize merge?

again, divide and conquer thinking helps

left as an exercise
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Our running example : Cholesky factorization

Input:
A: n× n positive semidefinite symmetric matrix

Output:
L: n× n lower triangular matrix s.t.

A = L tL

(tL is a transpose of L)

=A

tL

n

n
L
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Note : why Cholesky factorization is important?

It is the core step when solving

Ax = b (single righthand side)

or, in more general,

AX = B (multiple righthand sides),

as follows.
1 Cholesky decompose A = L tL and get

L tLX︸︷︷︸ = B

Y

2 Find X by solving triangular systems twice
1 LY = B
2

tLX = Y
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Formulate using subproblems

(
A11

tA21

A21 A22

)
=

(
L11 O
L21 L22

)(
tL11

tL21

O tL22

)
leads to three subproblems

1 A11 = L11
tL11

2 tA21 = L11
tL21

3 A22 = L21
tL21 + L22

tL22
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Solving with recursions

(
A11

tA21

A21 A22

)
=

(
L11 O
L21 L22

)(
tL11

tL21

O tL22

)
1 A11 = L11

tL11

recursion and get L11

2 tA21 = L11
tL21

solve a triangular system
and get tL21

3 A22 = L21
tL21 + L22

tL22

recursion on
(A22 −L21

tL21) and get L22

�
1 /∗ Cholesky factorization ∗/
2 chol(A) {
3 if (n = 1) return (

√
a11);

4 else {
5 L11 = chol(A11);
6 /∗ triangular solve ∗/
7 tL21 = trsm(L11, tA21);
8 L22 = chol(A22 − L21

tL21);

9 return

(
L11

tL21

L21 L22

)
10 }
11 }
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Remark 1 : “In-place update” version

Instead of returning the answer as another matrix, it is often
possible to update the input matrix with the answer

When possible, it is desirable, as it avoids extra copies

�
1 /∗ functional ∗/
2 chol(A) {
3 if (n = 1) return (

√
a11);

4 else {
5 L11 = chol(A11);
6 /∗ triangular solve ∗/
7 tL21 = trsm(L11, tA21);
8 L22 = chol(A22 − L21

tL21);

9 return

(
L11

tL21

L21 L22

)
10 }
11 }

�
1 /∗ in place ∗/
2 chol(A) {
3 if (n = 1) a11 :=

√
a11 ;

4 else {
5 chol(A11) ;
6 /∗ triangular solve ∗/
7 trsm(A11, A12);
8 A21 = tA12 ;
9 A22 -= A21A12

10 chol(A22) ;
11 }
12 }
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In-place Cholesky at work

�
1 /∗ in place ∗/
2 chol(A) {
3 if (n = 1) a11 :=

√
a11 ;

4 else {
5 chol(A11) ;
6 /∗ triangular solve ∗/
7 trsm(A11, A12);
8 A21 = tA12 ;
9 A22 -= A21A12

10 chol(A22) ;
11 }
12 }

A21

tA21A11

A22
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recursion
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In-place Cholesky at work

�
1 /∗ in place ∗/
2 chol(A) {
3 if (n = 1) a11 :=

√
a11 ;

4 else {
5 chol(A11) ;
6 /∗ triangular solve ∗/
7 trsm(A11, A12);
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tL21

recursion

L11

triangular solve

transpose
L22

recursion
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Remark 2 : where to decompose

Where to partition A is arbitrary
The case n1 = 1 and n2 = n− 1 ≈ loops

n1

n2

�
1 /∗ general ∗/
2 chol(A) {
3 if (n = 1) a11 :=

√
a11 ;

4 else {
5 chol(A11) ;
6 /∗ triangular solve ∗/
7 trsm(A11, A12);
8 A21 = tA12 ;
9 A22 -= A21A12

10 chol(A22) ;
11 }
12 }

�
1 /∗ loop−like ∗/
2 chol(A) {
3 if (n = 1) a11 :=

√
a11 ;

4 else {
5 a11 :=

√
a11 ;

6 /∗ triangular solve ∗/
7 a⃗12 /= a11 ;
8 a⃗21 /= a11 ;
9 A22 -= a⃗21a⃗12

10 chol(A22) ;
11 }
12 }
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Recursion to loops

The “loop-like” version (partition into 1 + (n− 1)) can be
written in a true loop

�
1 /∗ loop version ∗/
2 chol loop(A) {
3 for (k = 1; k ≤ n ; k ++ ) {
4 akk :=

√
akk ;

5 Ak,k+1:n /= akk ;
6 Ak+1:n,k /= akk ;
7 Ak+1:n,k+1:n -= Ak:n,kAk,k:n

8 }
9 }

In practice, you still need to code the loop to avoid creating too
small tasks
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A subproblem 1: triangular solve

Input:
L: M ×M lower triangle matrix
B: M ×N matrix

Output:
X: M ×N matrix X s.t.

LX = B

M

L
=X B

N N

MM
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Formulate using subproblems

Two ways to decompose:
1 (split X and B vertically)(

L11 O
L21 L22

)(
X1

X2

)
=

(
B1

B2

)
⇒

L11X1 = B1, and
L21X1 + L22X2 = B2

2 (split X and B horizontally)

L
(
X1 X2

)
=

(
B1 B2

)
⇒

LX1 = B1, and
LX2 = B2

Choice is arbitrary, but for reasons we describe later, we
decompose X and B so that their shapes are more square
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Solving with recursions

1 (
L11 O
L21 L22

)(
X1

X2

)
=

(
B1

B2

)

L11X1 = B1

recursion on (L11, B1) and get X1

L21X1 + L22X2 = B2 recursion on
(L22, B2 − L21X1) and get X2

2

L
(
X1 X2

)
=

(
B1 B2

)
⇒

solve them independently (easy)

�
1 /∗ triangular solve LX = B .
2 replace B with X ∗/
3 trsm(L,B) {
4 if (M = 1) {
5 B /= l11 ;
6 } else if (M ≥ N ) {
7 trsm(L11, B1);
8 B2 -= L21B1 ;
9 trsm(L22, B2);

10 } else {
11 trsm(L, B1) ;
12 trsm(L, B2) ;
13 }
14 }
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Triangular solve at work

�
1 /∗ triangular solve LX = B .
2 replace B with X ∗/
3 trsm(L,B) {
4 if (M = 1) {
5 B /= l11 ;
6 } else if (M ≥ N ) {
7 trsm(L11, B1);
8 B2 -= L21B1 ;
9 trsm(L22, B2);

10 } else {
11 trsm(L, B1) ;
12 trsm(L, B2) ;
13 }
14 }

M

B1

N

MM
L11

L21 L22 B2

67 / 84
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M N

MM
L11

L21 L22 B2
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MM
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Triangular solve at work
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MM
L11

L21 L22

B1

recursion

B2

matrix

recursion
multiply
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Recursions and loops

Again, partitioning is arbitrary and there is a loop-like
partitioning

�
1 /∗ loop ∗/
2 trsm(L,B) {
3 for (k = 1; k ≤ M ; k ++ ) {
4 Bk,1:M /= lkk ;
5 Bk+1:M,1:M -= Lk+1:M,kBk,1:M ;
6 }
7 }
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A subproblem 2: matrix multiply

Input :
C: M ×N matrix
A: M ×K matrix
B: K ×N matrix

Output :
C += AB

+=C A BM

N K

K

M

N
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Formulate using subproblems

Three ways to decompose

divide M : (
C1

C2

)
+=

(
A1

A2

)
B

→ C1 += A1B // C2 += A2B

divide N : (
C1 C2

)
+= A

(
B1 B2

)
→ C1 += AB1 // C2 += AB2

divide K :

C +=
(
A1 A2

)( B1

B2

)
→ C += A1B1 ; C += A2B2
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Which decomposition should we use?

For reasons described later, divide the largest one among M ,
N , and K

Make the shape of subproblems as square as possible
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Solving using recursions

+=

+=

+=

M M

N N

K

K

�
1 gemm(A,B,C) {
2 if ((M,N,K) = (1, 1, 1)) {
3 c11 += a11 ∗ b11;
4 } else if (M ≥ N and M ≥ K) {
5 A1, A2 = split h(A);
6 C1, C2 = split h(C);
7 gemm(A1, B, C1);
8 gemm(A2, B, C2);
9 } else if (N ≥ M and N ≥ K)

10 B1, B2 = split v(B);
11 C1, C2 = split v(C);
12 gemm(A,B1, C1);
13 gemm(A,B1, C2);
14 } else {
15 A1, A2 = split v(A);
16 B1, B2 = split h(B);
17 gemm(A1, B1, C);
18 gemm(A2, B2, C);
19 }
20 }
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Where is parallelism in our example?

Cholesky

�
1 /∗ in place ∗/
2 chol(A) {
3 if (n = 1) a11 :=

√
a11 ;

4 else {
5 chol(A11) ;
6 /∗ triangular solve ∗/
7 trsm(A11, A12);
8 A21 = tA12 ;
9 A22 -= A21A12

10 chol(A22) ;
11 }
12 }

data dependency prohibits
any of function calls in line
5-10 to be executed in
parallel
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Where is parallelism in our example?

Triangular solve

�
1 /∗ triangular solve LX = B .
2 replace B with X ∗/
3 trsm(L,B) {
4 if (M = 1) {
5 B /= l11 ;
6 } else if (M ≥ N ) {
7 trsm(L11, B1);
8 B2 -= L21B1 ;
9 trsm(L22, B2);

10 } else {
11 trsm(L , B1) ;
12 trsm(L , B2) ;
13 }
14 }

function calls in line 7-9
cannot be run in parallel

two calls to trsm at line 11
and a2 can be run in parallel
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Where is parallelism in our example?

Matrix multiply

�
1 gemm(A,B,C) {
2 if ((M,N,K) = (1, 1, 1)) {
3 c11 += a11 ∗ b11;
4 } else if (M ≥ N and M ≥ K) {
5 A1, A2 = split h(A);
6 C1, C2 = split h(C);
7 gemm(A1, B, C1);
8 gemm(A2, B, C2);
9 } else if (N ≥ M and N ≥ K)

10 B1, B2 = split v(B);
11 C1, C2 = split v(C);
12 gemm(A,B1, C1);
13 gemm(A,B1, C2);
14 } else {
15 A1, A2 = split v(A);
16 B1, B2 = split h(B);
17 gemm(A1, B1, C);
18 gemm(A2, B2, C);
19 }
20 }

when dividing M and N ,
two recursive calls can be
parallel

when dividing K, they
should be serial

(alternatively, we can execute

them in parallel using two

different regions for C and

then add them)
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That’s basically it!

�
1 gemm(A,B,C) {
2 if ((M,N,K) = (1, 1, 1)) {
3 c11 += a11 ∗ b11;
4 } else if (M ≥ N and M ≥ K) {
5 A1, A2 = split h(A);
6 C1, C2 = split h(C);
7 #pragma omp task
8 gemm(A1, B, C1);
9 #pragma omp task

10 gemm(A2, B, C2);
11 #pragma omp taskwait
12 } else if (N ≥ M and N ≥ K)
13 B1, B2 = split v(B);
14 C1, C2 = split v(C);
15 #pragma omp task
16 gemm(A,B1, C1);
17 #pragma omp task
18 gemm(A,B1, C2);
19 #pragma omp taskwait
20 } else {
21 // same as before
22 . . .
23 }
24 }

�
1 /∗ triangular solve LX = B .
2 replace B with X ∗/
3 trsm(L,B) {
4 if (M = 1) {
5 B /= l11 ;
6 } else if (M ≥ N ) {
7 trsm(L11, B1);
8 B2 -= L21B1 ;
9 trsm(L22, B2);

10 } else {
11 #pragma omp task
12 trsm(L, B1);
13 #pragma omp task
14 trsm(L, B2) ;
15 #pragma omp taskwait
16 }
17 }
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T1 and T∞ of matrix multiply

�
1 gemm(A,B,C) {
2 if ((M,N,K) = (1, 1, 1)) {
3 c11 += a11 ∗ b11;
4 } else if (M ≥ N and M ≥ K) {
5 . . .
6 #pragma omp task
7 gemm(A1, B, C1);
8 #pragma omp task
9 gemm(A2, B, C2);

10 #pragma omp taskwait
11 } else if (N ≥ M and N ≥ K)
12 . . .
13 #pragma omp task
14 gemm(A,B1, C1);
15 #pragma omp task
16 gemm(A,B1, C2);
17 #pragma omp taskwait
18 } else {
19 . . .
20 gemm(A1, B1, C);
21 gemm(A2, B2, C);
22 }
23 }

Work (T1), written by
Wgemm(M,N,K) =

Θ(1)
((M,N,K) = (1, 1, 1))

2Wgemm(M/2, N,K) + Θ(1)
(M is largest)

2Wgemm(M,N/2,K) + Θ(1)
(N is largest)

2Wgemm(M,N,K/2) + Θ(1)
(K is largest)

⇒ Θ(MNK)
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T1 and T∞ of matrix multiply

�
1 gemm(A,B,C) {
2 if ((M,N,K) = (1, 1, 1)) {
3 c11 += a11 ∗ b11;
4 } else if (M ≥ N and M ≥ K) {
5 . . .
6 #pragma omp task
7 gemm(A1, B, C1);
8 #pragma omp task
9 gemm(A2, B, C2);

10 #pragma omp taskwait
11 } else if (N ≥ M and N ≥ K)
12 . . .
13 #pragma omp task
14 gemm(A,B1, C1);
15 #pragma omp task
16 gemm(A,B1, C2);
17 #pragma omp taskwait
18 } else {
19 . . .
20 gemm(A1, B1, C);
21 gemm(A2, B2, C);
22 }
23 }

Critical path (T∞), written by
Cgemm(M,N,K) =

Θ(1)
((M,N,K) = (1, 1, 1)),

Cgemm(M/2, N,K) + Θ(1)
(M is largest)

Cgemm(M,N/2, K) + Θ(1)
(N is largest)

2Cgemm(M,N,K/2) + Θ(1)
(N is largest)

⇒ Θ(logM + logN +K) (we
consider it as Θ(K) for brevity)
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T1 and T∞ of triangular solve

�
1 /∗ triangular solve LX = B .
2 replace B with X ∗/
3 trsm(L,B) {
4 if (M = 1) {
5 B /= l11 ;
6 } else if (M ≥ N ) {
7 trsm(L11, B1);
8 B2 -= L21B1 ;
9 trsm(L22, B2);

10 } else {
11 #pragma omp task
12 trsm(L, B1);
13 #pragma omp task
14 trsm(L, B2) ;
15 #pragma omp taskwait
16 }
17 }

Work (T1), written by
Wtrsm(M,N) =

Θ(1)
((M,N) = (1, 1, 1))

2Wtrsm(M/2, N)
+Wgemm(M/2, N,M/2)

(M ≥ N)
2Wtrsm(M,N/2) + Θ(1)

(N > M)

⇒ Θ(M2N)
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T1 and T∞ of triangular solve

�
1 /∗ triangular solve LX = B .
2 replace B with X ∗/
3 trsm(L,B) {
4 if (M = 1) {
5 B /= l11 ;
6 } else if (M ≥ N ) {
7 trsm(L11, B1);
8 B2 -= L21B1 ;
9 trsm(L22, B2);

10 } else {
11 #pragma omp task
12 trsm(L, B1);
13 #pragma omp task
14 trsm(L, B2) ;
15 #pragma omp taskwait
16 }
17 }

Critical path (T∞), written by
Ctrsm(M,N) =

Θ(1)
((M,N) = (1, 1)),

2Ctrsm(M/2, N)
+Cgemm(M/2, N,M/2)

(M ≥ N)
Ctrsm(M,N/2) + Θ(1)

(N > M)

⇒ Θ(M logN)
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T1 and T∞ of Cholesky

�
1 chol(A) {
2 if (n = 1) a11 :=

√
a11 ;

3 else {
4 chol(A11) ;
5 /∗ triangular solve ∗/
6 trsm(A11, A12);
7 A21 = tA12 ;
8 A22 -= A21A12

9 chol(A22) ;
10 }
11 }

Work (T1), written by Wchol(n) =
Θ(1) (n = 1),
2Wchol(n/2)
+Wtrsm(n/2, n/2)
+Wtrans(n/2, n/2)
+Wgemm(n/2, n/2, n/2)

⇒ Θ(n3)
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T1 and T∞ of Cholesky

�
1 chol(A) {
2 if (n = 1) a11 :=

√
a11 ;

3 else {
4 chol(A11) ;
5 /∗ triangular solve ∗/
6 trsm(A11, A12);
7 A21 = tA12 ;
8 A22 -= A21A12

9 chol(A22) ;
10 }
11 }

Critical path (T∞), written by
Cchol(n) =

Θ(1) (n = 1)
2Cchol(n/2)
+Ctrsm(n/2, n/2)
+Ctrans(n/2, n/2)
+Cgemm(n/2, n/2, n/2)

⇒ Θ(n log n)
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Summary

For n× n matrix,

T1 ∈ Θ(n3)

T∞ ∈ Θ(n log n)

the average parallelism:

T1/T∞ =
n2

log n

this should be ample for sufficiently large n

a constant thresholding does not affect the asymptotic result;

you can switch to a serial loop for matrices smaller than a
constant

in practice, this threshold affects T1 and T∞

T1 will decrease (good thing)
T∞ will increase due to a larger serial computation at leaves
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