
CUDA

Kenjiro Taura

1 / 57

Contents

1 Overview

2 CUDA Basics

3 Kernels

4 Threads and thread blocks

5 Communicating data between host and device

6 Data sharing among threads in the device

7 Choosing a block size

2 / 57

Contents

1 Overview

2 CUDA Basics

3 Kernels

4 Threads and thread blocks

5 Communicating data between host and device

6 Data sharing among threads in the device

7 Choosing a block size

3 / 57

Goal

learn CUDA, the basic API for programming NVIDA GPUs

learn where it is similar to OpenMP and where it is different

4 / 57

CUDA reference

official documentation:
https://docs.nvidia.com/cuda/index.html

book Professional CUDA C Programming
https://www.amazon.com/

Professional-CUDA-Programming-John-Cheng/dp/

1118739329

5 / 57

https://docs.nvidia.com/cuda/index.html
https://www.amazon.com/Professional-CUDA-Programming-John-Cheng/dp/1118739329
https://www.amazon.com/Professional-CUDA-Programming-John-Cheng/dp/1118739329
https://www.amazon.com/Professional-CUDA-Programming-John-Cheng/dp/1118739329

Compiling/running CUDA programs with NVCC

compile with nvcc command�
1 $ nvcc program.cu

the conventional extension of CUDA programs is .cu

nvcc can handle ordinary C/C++ programs too (.cc, .cpp

→ C+)

you can have a file with any extension and insist it is a
CUDA program (convenient when you maintain a single file
that compiles both on CPU and GPU)�

1 $ nvcc -x cu program.cc

run the executable on a node that has a GPU(s)�
1 $ srun -p p ./a.out

6 / 57

Contents

1 Overview

2 CUDA Basics

3 Kernels

4 Threads and thread blocks

5 Communicating data between host and device

6 Data sharing among threads in the device

7 Choosing a block size

7 / 57

GPU is a device separate from CPU

as such,

code (functions) that runs on GPU must be so designated

data must be copied between CPU and GPU

a GPU is often called a “device”,

and a CPU a “host”

host (CPU) device (GPU)

8 / 57

Contents

1 Overview

2 CUDA Basics

3 Kernels

4 Threads and thread blocks

5 Communicating data between host and device

6 Data sharing among threads in the device

7 Choosing a block size

9 / 57

Two things you need to learn first: writing and

launching kernels

a “GPU kernel” (or simply a “kernel”) is a function that runs
on GPU�

1 global void f(...) { ... }

syntactically, a kernel is an ordinary C++ function that
returns nothing (void), except for the global keyword
a host launches a kernel specifying the number of threads.�

1 f<<<nb,bs>>>(...);

will create (nb × bs) CUDA threads, each executing f(...)

...

nb thread blocks

bs threads in a thread block

...

10 / 57

Launching a kernel ≈ parallel loop

launching a kernel, like�
1 f<<<nb,bs>>>(...);

≈ executing the following loop in parallel (on GPU, of course)�
1 for (i = 0; i < nb * bs; i++) {

2 f(...); // CUDA thread
3 }

...

nb thread blocks

bs threads in a thread block

...

11 / 57

A simplest example

writing a kernel�
1 __global__ void cuda_thread_fun(int n) {

2 int i = blockDim.x * blockIdx.x + threadIdx.x;

3 int nthreads = gridDim.x * blockDim.x;

4 if (i < nthreads) {

5 printf("hello I am CUDA thread %d out of %d\n", i, nthreads);

6 }

7 }

and launching it�
1 int thread_block_sz = 64;

2 int n_thread_blocks = (n + thread_block_sz - 1) / thread_block_sz;

3 cuda_thread_fun<<<n_thread_blocks,thread_block_sz>>>(n);

will print hello n times�
1 hello I am CUDA thread 0 out of n
2 ...

3 hello I am CUDA thread n− 1 out of n

note: the order is unpredictable
12 / 57

A CUDA thread is not like an OpenMP thread

launching 10000 CUDA threads is quite common and efficient�
1 f<<<1024,256>>(...);

launching 10000 threads on CPU is almost always a bad idea
below is “semantically” similar to the above�

1 #pragma omp parallel

2 f();�
1 OMP NUM THREADS=262144 ./a.out

but what happens inside is very different
CPU way of doing this was:�

1 #pragma omp parallel for

2 for (i = 0; i < 1024 * 256; i++) { f(); }�
1 OMP NUM THREADS=a modest number ./a.out

a modest number = typically the actual number of cores
13 / 57

A kernel call and the host overlap but two kernel

calls do not

when you call a kernel, the host continues execution without
waiting for it to finish

two kernel calls are serialized on the GPU side, by default

cudaDeviceSynchronize() is an API to wait for the kernel
to finish�

1 h0();

2 g0<<<...,...>>>();

3 h1();

4 g1<<<...,...>>>();

5 h2();

6 g2<<<...,...>>>();

7 cudaDeviceSynchronize();

8 h3();

g0 may overlap with h1 and h2

g0 and g1 do not overlap because of
GPU serializes them by default

h3 does not overlap with anything
because of cudaDeviceSynchronize()

14 / 57

About thread IDs

for each thread to determine what to do, it needs a unique ID
(the loop index)
you get it from gridDim, block{Dim,Idx} and threadIdx

when you launch a kernel by�
1 f<<<nb,bs>>>(...);

...

the grid (gridDim.x thread blocks)

a thread block (blockDim.x threads)

...

blockIdx.x=0 blockIdx.x=1 blockIdx.x=2 ...

threadIdx.x=0 =1 =2

blockDim.x = bs (the thread block size)
gridDim.x = nb (the number of blocks = the “grid” size)

and
threadIdx.x = the thread ID within the block (∈ [0, bs))
blockIdx.x = the thread’s block ID (∈ [0,nb))

15 / 57

Remarks

as suggested by .x, a block and the grid can be
multidimensional (up to 3D, of .x, .y, .z) and the
previous code assumes they are 1D
extension to multidimensional block/grid is straightforward
1D:�

1 int nb = 100;

2 int bs = 256

3 f<<<nb,bs>>>(...); // 100∗256 threads

2D:�
1 dim3 nb(10,10);

2 dim3 bs(8,32);

3 f<<<nb,bs>>>(...); // 10∗10∗8∗32 threads

3D:�
1 dim3 nb(10,5,2);

2 dim3 bs(8,8,4);

3 f<<<nb,bs>>>(...); // 10∗5∗2∗8∗8∗4 threads

16 / 57

SpMV in CUDA

original serial code�
1 for (k = 0; k < A.nnz; k++) {

2 i,j,Aij = A.elems[k];

3 y[i] += Aij * x[j];

4 }

write a kernel that works on a single non-zero element�
1 __global__ spmv_dev(A, x, y) {

2 k = blockDim.x * blockIdx.x + threadIdx.x; // thread id
3 if (k < A.nnz) {

4 i,j,Aij = A.elems[k];

5 y[i] += Aij * x[j]; } }

and launch it with ≥ nnz threads (we’re not done yet)�
1 spmv*(A, x, y) {

2 int bs = 256;

3 int nb = (A.nnz + bs - 1) / bs;

4 spmv_dev<<<nb,bs>>(A, x, y); }

similarly simple for CSR version
17 / 57

We’re not done yet

this code�
1 __global__ spmv_dev(A, x, y) {

2 k = blockDim.x * blockIdx.x + threadIdx.x;

3 if (k < nnz) {

4 i,j,Aij = A.elems[k];

5 y[i] += Aij * x[j];

6 }

7 }

does not work yet
1 the device cannot access elements of A, x and y on the host
2 there is a race condition when updating y[i]

18 / 57

Keywords for functions

global , device , host

callable from code runs on
global host/device device
device device device
host host host

global functions cannot return a value (must be void)

you can have both host and device in front of a
definition, which generates two versions (device and host)

19 / 57

Macros

convenient when writing a single file that works both on CPU
and GPU

NVCC : a macro defined when compiled by nvcc�
1 #ifdef __NVCC__

2 // GPU implementation
3 #else

4 // CPU implementation
5 #endif

CUDA ARCH : a macro defined when copiled for device�
1 __device__ __host__ f(...) {

2 #ifdef __CUDA_ARCH__

3 // device code
4 #else

5 // host code
6 #endif

7 }

20 / 57

Contents

1 Overview

2 CUDA Basics

3 Kernels

4 Threads and thread blocks

5 Communicating data between host and device

6 Data sharing among threads in the device

7 Choosing a block size

21 / 57

Threads and thread blocks (recap)

a kernel specifies the action of a CUDA thread

when you launch a kernel you specify

the number of thread blocks (nb) and
the thread block size = the number of threads in a single
thread block (bs),

to effectively create (nb × bs) threads

...

the grid (gridDim.x thread blocks)

a thread block (blockDim.x threads)

...

blockIdx.x=0 blockIdx.x=1 blockIdx.x=2 ...

threadIdx.x=0 =1 =2

but why you need two separate numbers?

22 / 57

Why two numbers (bs and nb)?

a single thread block is sent to a single SM and stays there until it
finishes

GPU core (streaming multiprocessor)

......

......

...

...

GPU sends a thread block to an SM

f<<<nb,bs>>(...)

23 / 57

The way thread block boundaries are

semantically visible

CUDA API exposes “shared memory”, a small cache-like
memory only shared within a single thread block
CUDA API exposes some synchronization/coordination
primitives (e.g., syncthreads() or reduction) only usable
within a single thread block
unless you rely on these primitives, choosing the thread block
size is largely a performance (not a correctness) issue

...

thread blocks

...

"global memory" 24 / 57

The way thread block boundaries are

semantically visible

CUDA API exposes “shared memory”, a small cache-like
memory only shared within a single thread block

CUDA API exposes some synchronization/coordination
primitives (e.g., syncthreads() or reduction) only usable
within a single thread block
unless you rely on these primitives, choosing the thread block
size is largely a performance (not a correctness) issue

...

thread blocks

...

"shared memory"

"global memory" 24 / 57

The way thread block boundaries are

semantically visible

CUDA API exposes “shared memory”, a small cache-like
memory only shared within a single thread block
CUDA API exposes some synchronization/coordination
primitives (e.g., syncthreads() or reduction) only usable
within a single thread block

unless you rely on these primitives, choosing the thread block
size is largely a performance (not a correctness) issue

...

thread blocks

...

"shared memory"

"global memory"

__syncthreads(), reduction

24 / 57

The way thread block boundaries are

semantically visible

CUDA API exposes “shared memory”, a small cache-like
memory only shared within a single thread block
CUDA API exposes some synchronization/coordination
primitives (e.g., syncthreads() or reduction) only usable
within a single thread block
unless you rely on these primitives, choosing the thread block
size is largely a performance (not a correctness) issue

...

thread blocks

...

"shared memory"

"global memory"

__syncthreads(), reduction

24 / 57

Contents

1 Overview

2 CUDA Basics

3 Kernels

4 Threads and thread blocks

5 Communicating data between host and device

6 Data sharing among threads in the device

7 Choosing a block size

25 / 57

Moving data between host and device

host and device memory are separate
the device cannot access data on the host and vice versa (at
least not directly by hardware until recently)
i.e., the following does not work�

1 double a[n];

2 f<<<nb,bs>>>(a);�
1 __global__ f(double * a) {

2 ... a[i] ... // this will segfault
3 }

host (CPU) device (GPU)

26 / 57

Moving data between host and device

host and device memory are separate
the device cannot access data on the host and vice versa (at
least not directly by hardware until recently)
i.e., the following does not work�

1 double a[n];

2 f<<<nb,bs>>>(a);�
1 __global__ f(double * a) {

2 ... a[i] ... // this will segfault
3 }

host (CPU) device (GPU)

a

26 / 57

Two more things you must master: cudaMalloc

and cudaMemcpy

you need to

1 allocate data on device (by cudaMalloc) → device memory
2 move data between the host and the device (by cudaMemcpy)
3 give the kernel the pointer to the device memory

note: call cudaMalloc and cudaMemcpy on the host, not on
the device

host (CPU) device (GPU)

a

27 / 57

Two more things you must master: cudaMalloc

and cudaMemcpy

you need to
1 allocate data on device (by cudaMalloc) → device memory

2 move data between the host and the device (by cudaMemcpy)
3 give the kernel the pointer to the device memory

note: call cudaMalloc and cudaMemcpy on the host, not on
the device

host (CPU) device (GPU)

cudaMalloc

a
a_dev

27 / 57

Two more things you must master: cudaMalloc

and cudaMemcpy

you need to
1 allocate data on device (by cudaMalloc) → device memory
2 move data between the host and the device (by cudaMemcpy)

3 give the kernel the pointer to the device memory

note: call cudaMalloc and cudaMemcpy on the host, not on
the device

host (CPU) device (GPU)

cudaMemcpy

a
a_dev

27 / 57

Two more things you must master: cudaMalloc

and cudaMemcpy

you need to
1 allocate data on device (by cudaMalloc) → device memory
2 move data between the host and the device (by cudaMemcpy)
3 give the kernel the pointer to the device memory

note: call cudaMalloc and cudaMemcpy on the host, not on
the device

host (CPU) device (GPU)

cudaMemcpy

a
a_dev

27 / 57

Two more things you must master: cudaMalloc

and cudaMemcpy

you need to
1 allocate data on device (by cudaMalloc) → device memory
2 move data between the host and the device (by cudaMemcpy)
3 give the kernel the pointer to the device memory

note: call cudaMalloc and cudaMemcpy on the host, not on
the device

host (CPU) device (GPU)

cudaMemcpy

a
a_dev

27 / 57

Typical steps to send data to the device

1 allocate data of the same size both on host and device�
1 double * a = ...; // any valid address will do (malloc, &variable, etc.)
2 double * a_dev = 0;

3 cudaMalloc((void **)&a_dev, sz);

2 the host works on the host data�
1 for (...) { a[i] = ... } // whatever initialization you need

3 copy the data to the device�
1 cudaMemcpy(a_dev, a, sz, cudaMemcpyHostToDevice);

4 pass the device pointer to the kernel�
1 f<<<nb,bs>>>(a dev, ...)

5 often a good idea to have a struct encapsulating both pointers�
1 typedef struct {

2 double * a; // host pointer
3 double * a_dev; // device pointer
4 ... } my_struct;

28 / 57

Typical steps to retrieve the result

1 allocate data of the same size both on host and device�
1 double * r = ... ;

2 double * r_dev = 0;

3 cudaMalloc((void **)&r_dev, sz);

2 pass the device pointer to the kernel�
1 f<<<nb,bs>>>(..., r_dev);

3 copy the data to the host�
1 cudaMemcpy(r, r_dev, sz, cudaMemcpyDeviceToHost);

29 / 57

Unified Memory

recent NVIDIA GPUs support Unified Memory that
eliminate the need for explicit data movement between host
and device memory and dual pointer management

at the heart of it is cudaMallocManaged, which is like
cudaMalloc but is directly accessible from host CPU too

30 / 57

Typical steps to send data to the device with

Unified Memory

1 allocate data of the same size both on host and device�
1 double * a = 0;

2 cudaMallocManaged((void **)&a, sz);

2 the host works on the host data�
1 for (...) { a[i] = ... } // whatever initialization you need

3 pass the pointer to the kernel�
1 f<<<nb,bs>>>(a, ...)

31 / 57

Typical steps to retrieve the result with Unified

Memory

1 allocate data with cudaMallocManaged�
1 double * r = 0;

2 cudaMallocManaged((void **)&r, sz);

2 pass the device pointer to the kernel�
1 f<<<nb,bs>>>(..., r);

3 make sure threads finished their work�
1 cudaDeviceSynchronize();

32 / 57

Contents

1 Overview

2 CUDA Basics

3 Kernels

4 Threads and thread blocks

5 Communicating data between host and device

6 Data sharing among threads in the device

7 Choosing a block size

33 / 57

Data sharing among threads in the device

basics : memory allocated via cudaMalloc(Managed)? are
shared among all threads (global memory)

a write by a thread will be visible to all others (sooner or
later)

shared memory :
hardware terms: a small on-chip memory as fast as caches,
not coherent across SMs
software view: memory shared only within a thread block

other weirder memory types not covered in the lecture
(constant and texture)

...

thread blocks

...

"shared memory"

"global memory"

__syncthreads(), reduction

34 / 57

How to resolve race conditions on global/shared

memory?

CUDA threads run concurrently so they are susceptible to
race conditions as in CPUs�

1 __global__ spmv_dev(A, x, y) {

2 k = blockDim.x * blockIdx.x + threadIdx.x; // thread id
3 if (k < nnz) {

4 i,j,Aij = A.elems_dev[k];

5 y[i] += Aij * x[j];

6 }

7 }

35 / 57

Resolving race condition on CUDA

atomic accumulations (atomicAdd and other functions)

forget about mutual exclusion (no #pragma omp critical

equivalent)

barrier synchronization, upon which you can built reductions

reduction, but only within a single thread block

OpenMP CUDA
atomic accumulation pragma atomic atomicAdd
mutual exclusion pragma critical

or omp lock t

barrier pragma barrier cooperative thread group
reduction pragma reduction only within a thread block,

or DIY with barrier

36 / 57

Atomic accumulations

consider the following (trivial) example�
1 int * a;

2 cudaMallocManaged(&a, sizeof(int) * nb * bs);

3 for (i=0; i<nb*bs; i++) a[i] = 1;

4 sum<<<nb,bs>>>(a);

5 cudaDeviceSynchronize();

6 printf("sum = %d\n", a[0]);

the goal is to guarantee it always prints the sum of all
elements in the array (= nb × bs)

a race-prone version�
1 __global__ void f(int * a) {

2 int i = thread id;
3 if (i > 0) a[0] += a[i];

4 }

37 / 57

Atomic accumulations

atomic accumulations are supported by the hardware and
CUDA API

atomicAdd(p, x) ≈�
1 #pragma omp atomic

2 *p += x

in OpenMP
search the CUDA toolkit documentation for “atomicAdd”

there are other primitives, such as compare-and-swap

fix our example�
1 __global__ void f(int * a) {

2 int i = thread id;
3 if (i > 0) atomicAdd(&a[0], a[i]);

4 }

38 / 57

A working version of COO SpMV

�
1 __global__ spmv_dev(A, x, y) {

2 k = thread id;
3 if (k < nnz) {

4 i,j,Aij = A.elems_dev[k];

5 atomicAdd(&y[i], Aij * x[j]);

6 }

7 }

make sure A.elems dev, x and y point to device memory
(not shown)

note: CSR is simpler to work with if you don’t parallelize
within a row

39 / 57

Barrier synchronization

barrier is a mechanism to ensure “all threads reached a point”

useful to ensure changes made by a thread is visible all others

CUDA used to support barriers only within a single thread
block (syncthreads())

it now supports barriers for all threads (C. Cooperative
Groups)

barrer

40 / 57

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#cooperative-groups
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#cooperative-groups

Cooperative groups (1)

(important) when using the following features, launch a
kernel by�

1 void * args[] = { a0, a1, ... };

2 cudaLaunchCooperativeKernel((void *)f, nb, bs, args);

instead of the ordinary�
1 f<<<nb,bs>>>(a0, a1, ...);

common setup�
1 #include <cooperative_groups.h>

2 namespace cg = cooperative_groups; // save typing

41 / 57

Cooperative groups (2)

data representing a group�
1 cg::grid_group g = cg::this_grid(); // all threads�
1 cg::thread_block g = cg::this_thread_block(); // thread block

barrier synchronization�
1 g.sync(); // barrier all theads in g participate

group actually provides a cleaner way to know thread ID and
number of threads�

1 unsigned long long idx = g.thread_rank(); // my ID in g
2 unsigned long long nth = g.size(); // num threads in g

42 / 57

Building reduction on barrier

1 1

2 1 1 1 1 1 1 1 1 1 1 12 2 2 2 2 2 2 2 2 2

4 1 1 1 1 1 1 1 1 1 1 12 2 2 2 24 4 4 4 2

8 1 1 1 1 1 1 1 1 1 1 12 2 2 2 24 4 28 6

14 1 1 1 1 1 1 1 1 1 1 12 2 2 2 24 4 28 6

22 1 1 1 1 1 1 1 1 1 1 12 2 2 2 24 4 28 6

barrier

barrier

barrier

barrier

barrier

m

t

�
1 __global__

2 void sum(double * c, long n) {

3 // return c[0] + .. + c[n−1]
4 cg::grid_group g = cg::this_grid();

5 ull i = g.thread_rank();

6 ull h; // ull: unsigned long long
7 for (long m = n; m > 1; m = h) {

8 h = (m + 1) / 2;

9 if (i + h < m) c[i] += c[i + h];

10 g.sync();

11 } }

invariant: “sum(c[0:m])

is the sum”, it repeats
halving m

note: it may not be most
efficient; reducing values
within a single block first
may be better

43 / 57

CUDA shared memory

CUDA programs can allocate a “shared memory” to each
thread block�

1 f<<<nb,bs,S>>>(...);

from CUDA program’s perspective, it is a memory only
shared within a thread block and only active during the thread
block’s lifetime

the term shared memory is a misnomer, IMO; ordinary
memory you allocate via cudaMalloc is shared by all threads
local memory or something will be a more appropriate name

physically, it is a cache-like memory faster than global
memory

each SM has a fixed amount of shared memory (A100 :
164KB)

S× ≤ shared memory per SM

44 / 57

https://docs.nvidia.com/cuda/ampere-tuning-guide/index.html#sm-occupancy

Accessing CUDA shared memory

specify the shared memory size on a kernel call and a kernel
accesses it by declaring variables or arrays with shared�

1 __shared__ int a[n];

2 __shared__ char b[m];

if the data size (n or m above) is not a compile-time constant,
obtain the starting address of the shared memory by�

1 extern __shared__ char whatever[];

it’s your responsibility to use appropriate part of it. e.g.,�
1 int * a = (int*)whatever;

2 char * b = (char *)&a[n];

shared memory is a way to efficiently communicate among
threads within a block
GPU has nowadays processor-managed caches, so how crucial
it is to performance is somewhat changing over time

45 / 57

Contents

1 Overview

2 CUDA Basics

3 Kernels

4 Threads and thread blocks

5 Communicating data between host and device

6 Data sharing among threads in the device

7 Choosing a block size

46 / 57

Choosing a good block size for performance

the question is, when you create a number of, say 10000,
threads, how you divide them into thread blocks?�

1 f<<<1, 10000>>>(x, y, z, ...);

2 f<<<10, 1000>>>(x, y, z, ...);

3 f<<<100, 100>>>(x, y, z, ...);

4 f<<<1000, 10>>>(x, y, z, ...);

5 f<<<10000, 1>>>(x, y, z, ...);

and countless other ways . . .
the goal is to run an enough number of threads
simultaneously so they utilize the hardware capacity of an SM

to this end, let’s understand what a GPU actually does,
given a thread block size and the number of blocks

47 / 57

Parallelism within an SM

consists of three levels
thread ⊂ warp ⊂ thread block ⊂ SM

a group of 32 CUDA threads makes a warp
a group of ⌈bs/32⌉ warps makes a thread block
and there are multiple thread blocks executing simultaneously
on a single SM

48 / 57

Parallelism within an SM

consists of three levels
thread ⊂ warp ⊂ thread block ⊂ SM

a group of 32 CUDA threads makes a warp

a group of ⌈bs/32⌉ warps makes a thread block
and there are multiple thread blocks executing simultaneously
on a single SM

...
a warp (32 CUDA threads)

48 / 57

Parallelism within an SM

consists of three levels
thread ⊂ warp ⊂ thread block ⊂ SM

a group of 32 CUDA threads makes a warp
a group of ⌈bs/32⌉ warps makes a thread block

and there are multiple thread blocks executing simultaneously
on a single SM

...
a warp (32 CUDA threads)

...
...

a thread block

48 / 57

Parallelism within an SM

consists of three levels
thread ⊂ warp ⊂ thread block ⊂ SM

a group of 32 CUDA threads makes a warp
a group of ⌈bs/32⌉ warps makes a thread block
and there are multiple thread blocks executing simultaneously
on a single SM

streaming multiprocessor

...
a warp (32 CUDA threads)

...
...

a thread block
...

a warp (32 CUDA threads)

...
...

a thread block

...
a warp (32 CUDA threads)

...
...

a thread block

...
a warp (32 CUDA threads)

...
...

a thread block

48 / 57

Warps

a warp is the unit of instruction execution
32 threads in a single warp share an instruction pointer (a
warp ≈ a CPU thread executing 32-way SIMD instructions)
at every cycle, an SM selects a few (actually, ≤ 2) warps and
execute them
⇒

there is rarely a point in making bs < 32 or not a multiple of
32 (ramainder threads consume resources but perform no
useful work)
you want to make 32 threads branch in the same way (avoid
warp divergence)

...
a warp (32 CUDA threads)

49 / 57

Thread blocks

a thread block is the unit of dispatching to an SM
conceptually, a kernel launch f<<<nb, ...>>>(x, y, ...)

puts nb blocks in a queue, which GPU dispatches to SMs, one
block at a time
once a block starts running, they stay on the SM until it
finishes and occupies registers and shared memory throughout
⇒ the number of blocks simultaneously running on an SM is
limited by registers and shared memory a thread block uses

streaming multiprocessor

...
a warp (32 CUDA threads)

...
...

a thread block
...

a warp (32 CUDA threads)

...
...

a thread block

...
a warp (32 CUDA threads)

...
...

a thread block

...
a warp (32 CUDA threads)

...
...

a thread block (Wb warps)

registers (Rb)
shared memory (Sb)

50 / 57

Registers and shared memory

registers
hold local and temporary variables of threads
the size is determined by your program and the compiler

shared memory
can be allocated when launching a kernel by�

1 f<<<nb, bs, Sb>>>(x, y, z, ...)

and is shared within a thread block

streaming multiprocessor

...
a warp (32 CUDA threads)

...
...

a thread block
...

a warp (32 CUDA threads)

...
...

a thread block

...
a warp (32 CUDA threads)

...
...

a thread block

...
a warp (32 CUDA threads)

...
...

a thread block (Wb warps)

registers (Rb)
shared memory (Sb)

51 / 57

Hardware limits

all numbers are per SM

A100 (compute capability 8.0)
registers 65336 × 32 bits
shared memory 164 KB
warps that can simultaneously run 64
thread blocks that can simultaneously run 32

V100 (compute capability 7.0)
registers 65336 × 32 bits
shared memory 96 KB
warps that can simultaneously run 64
thread blocks that can simultaneously run 32

52 / 57

Putting them together

blocks that will simultaneously run on an SM

given (from the programmer or the compiler)
Tb : the number of threads per block,
Sb : shared memory size per block, and
R1 : registers per thread,

calculate various resources per block
warps per block : Wb = ⌈Tb/32⌉
registers per block : Rb = 32R1 ×Wb

streaming multiprocessor

...
a warp (32 CUDA threads)

...
...

a thread block
...

a warp (32 CUDA threads)

...
...

a thread block

...
a warp (32 CUDA threads)

...
...

a thread block

...
a warp (32 CUDA threads)

...
...

a thread block (Wb warps)

registers (Rb)
shared memory (Sb)

53 / 57

Putting them together

the number of blocks that simultaneously run on an SM (nb)

nb = min(⌊65536/Rb⌋ , ⌊164K/Sb⌋ , ⌊64/Wb⌋ , 32)
= min(⌊2048/(R1Wb)⌋ , ⌊164K/Sb⌋ , ⌊64/Wb⌋ , 32)

the number of warps simultaneously run on an SM (nw)

nw = Wb · nb
= Wb ·min(⌊2048/(RWb)⌋ , ⌊164K/Sb⌋ , ⌊64/Wb⌋ , 32)

streaming multiprocessor

...
a warp (32 CUDA threads)

...
...

a thread block
...

a warp (32 CUDA threads)

...
...

a thread block

...
a warp (32 CUDA threads)

...
...

a thread block

...
a warp (32 CUDA threads)

...
...

a thread block (Wb warps)

registers (Rb)
shared memory (Sb)

54 / 57

Takeaways (often good thread block sizes)

Wb ·min(⌊2048/(R1Wb)⌋ , ⌊164K/Sb⌋ , ⌊64/Wb⌋ , 32)

if we ignore factors that come from R1 and Sb, a guideline is to
run the maximum 64 warps simultaneously and it can be
accomplished by

putting at least two warps in a block (so 64/Wb ≤ 32) and

chooseing the number of warps per block that divides 64

that is, Wb = 2, 4, 8, 16, 32 (or Tb = 64, 128, 256, 512, 1024)

55 / 57

Remarks

64 warps is merely an upper bound that

may not be necessary to get the maximum performance (e.g.,
floating point performance, whose limit is 2-warp (= 64)
FMAs per cycle) and
may not be achievable due to other constraints (registers and
shared memory)

the above takeaway is a rule of thumb to eliminate bad
thread block sizes

56 / 57

Occupancy calculator

NVIDIA used to provide a simple Excel to give you how
many warps can run simultaneously given block size (Tb),
shared memory per block (Sb), and registers per thread (R1)

a small web page doing the same at
https://xmartlabs.github.io/cuda-calculator/

57 / 57

https://docs.nvidia.com/cuda/cuda-occupancy-calculator/index.html
https://xmartlabs.github.io/cuda-calculator/

	Overview
	CUDA Basics
	Kernels
	Threads and thread blocks
	Communicating data between host and device
	Data sharing among threads in the device
	Choosing a block size

