Kenjiro Taura

1/57

Contents

@ Overview

© CUDA Basics

© Kernels

@ Threads and thread blocks

© Communicating data between host and device

@ Data sharing among threads in the device

@ Choosing a block size

2/57

@ Overview

© CUDA Basics

@ Kernels

@ Threads and thread blocks

© Communicating data between host and device

@ Data sharing among threads in the device

@ Choosing a block size

3/57

Goal

e learn CUDA, the basic API for programming NVIDA GPUs

@ learn where it is similar to OpenMP and where it is different

4/57

CUDA reference

e official documentation:
https://docs.nvidia.com/cuda/index.html

@ book Professional CUDA C Programming
https://www.amazon. com/
Professional-CUDA-Programming-John-Cheng/dp/
1118739329

5/57

https://docs.nvidia.com/cuda/index.html
https://www.amazon.com/Professional-CUDA-Programming-John-Cheng/dp/1118739329
https://www.amazon.com/Professional-CUDA-Programming-John-Cheng/dp/1118739329
https://www.amazon.com/Professional-CUDA-Programming-John-Cheng/dp/1118739329

Compiling/running CUDA programs with NVCC

e compile with nvcc command

1 [$ nvcc program.cu

e the conventional extension of CUDA programs is .cu

e nvcc can handle ordinary C/C++ programs too (.cc, .cpp
— C+)

@ you can have a file with any extension and insist it is a
CUDA program (convenient when you maintain a single file

that compiles both on CPU and GPU)

1 [$ nvcc -X cu program.cc

e run the executable on a node that has a GPU(s)

1 ($ srun -p p ./a.out

6/57

@ Overview

© CUDA Basics

© Kernels

@ Threads and thread blocks

© Communicating data between host and device

@ Data sharing among threads in the device

@ Choosing a block size

7/57

GPU is a device separate from CPU

as such,

e code (functions) that runs on GPU must be so designated
e data must be copied between CPU and GPU

e a GPU is often called a “device”,

e and a CPU a “host”

host (CPU) device (GPU)

8/57

@ Overview

© CUDA Basics

© Kernels

@ Threads and thread blocks

© Communicating data between host and device

@ Data sharing among threads in the device

@ Choosing a block size

9/57

Two things you need to learn first: writing and
launching kernels

e a “GPU kernel” (or simply a “kernel”) is a function that runs
on GPU

1 (,,global,, void £(...) { ... }

e syntactically, a kernel is an ordinary C++ function that
returns nothing (void), except for the __global__ keyword
@ a host launches a kernel specifying the number of threads.

1 (f<<<nb, bs>>>(...);

will create (nb x bs) CUDA threads, each executing f{(...)
bs threads in a thread block

nb thhi"kéadﬂrbiocks

10/ 57

Launching a kernel ~ parallel loop

e launching a kernel, like

1 [f<<<nb,bs>>>(..J;

e ~ executing the following loop in parallel (on GPU, of course)

1 |for (i = 0; i < nb * bs; i++) {
2 £(...); // CUDA thread
s |}

bs threads in a thread block

nb thread bIocks

11/57

A simplest example

R N

IECN

writing a kernel

__global__ void cuda_thread_fun(int n) {
int i blockDim.x * blockIdx.x + threadldx.x;
int nthreads = gridDim.x * blockDim.x;
if (i < nthreads) {
printf("hello I am CUDA thread %d out of %d\n", i, nthreads);

}
}

and launching it

int thread_block_sz = 64;
int n_thread_blocks = (n + thread_block_sz - 1) / thread_block_sz;
cuda_thread_fun<<<n_thread_blocks,thread_block_sz>>>(n);

will print hello n times

hello I am CUDA thread O out of n

hello I am CUDA thread nm — 1 out of n

note: the order is unpredictable

12/57

A CUDA thread is not like an OpenMP thread

e launching 10000 CUDA threads is quite common and efficient

1 [f<<<1024,256>>(...);

e launching 10000 threads on CPU is almost always a bad idea
@ below is “semantically” similar to the above

1
2

#pragma omp parallel
£0;

1 [DMP,NUM,THREADS=262144 ./a.out

but what happens inside is very different
e CPU way of doing this was:

1
2

#pragma omp parallel for
for (1 = 0; 1 < 1024 * 256; i++) { £(O; }

1 [OMP,NUM,THREADS=(1 modest number ./a.out

a modest number = typically the actual number of cores
13 /57

A kernel call and the host overlap but two kernel

calls do not

e when you call a kernel, the host continues execution without

waiting for it to finish

e two kernel calls are serialized on the GPU side, by default

e cudaDeviceSynchronize() is an API to wait for the kernel

to finish
ho();
go<<<. vyt >>>()
h1Q);
glk<. .., ... >>>()
h20);
g2<<<. ., >>>()

cudaDeviceSynchronize() ;
h30);

@ g0 may overlap with h1 and h2

@ g0 and g1 do not overlap because of
GPU serializes them by default

@ h3 does not overlap with anything
because of cudaDeviceSynchronize ()

14 /57

About thread IDs

e for each thread to determine what to do, it needs a unique 1D
(the loop index)

@ you get it from gridDim, block{Dim,Idx} and threadIdx

e when you launch a kernel by

1 [f<<<nb,bs>>>(. L)

a thread block (blockDim.x threads)

threadldx.x=0 , 1

ST T

blockIdx.x=0 blockldx x-‘l bIockIdxx 2

the gr/d (grllem X thread blocks)

e blockDim.x = bs (the thread block size)

o gridDim.x = nb (the number of blocks = the “grid” size)
and

o threadIdx.x = the thread ID within the block (€ [0, bs))

e blockIdx.x = the thread’s block ID (€ [0, nb))

15/ 57

Remarks

as suggested by .x, a block and the grid can be
multidimensional (up to 3D, of .x, .y,
previous code assumes they are 1D

.z) and the

extension to multidimensional block/grid is straightforward

1D:

int nb = 100;
int bs = 256
£<<<nb,bs>>>(...); // 100256 threads

2D:

dim3 nb(10,10);
dim3 bs(8,32);
£<<<nb,bs>>>(...); // 10%10%8%32 threads

3D:

dim3 nb(10,5,2);
dim3 bs(8,8,4);
£<<<nb,bs>>>(...); // 10%x5+2x8+8x/ threads

16 /57

SpMV in CUDA

e original serial code

S ESNURER RN

R SN SR

for (k = 0; k < A.nnz; k++) {
i,j,Aij = A.elems[k];
y[il += Aij * x[j1;

}

write a kernel that works on a single non-zero element

__global__ spmv_dev(A, x, y) {
k = blockDim.x * blockIdx.x + threadIdx.x; // thread id
if (k < A.nnz) {
i,j,Aij = A.elems[k];
y[il += Aij * x[j1; } %

and launch it with > nnz threads (we’re not done yet)

spmv* (4, x, y) {
int bs = 256;
int nb = (A.nnz + bs - 1) / bs;
spmv_dev<<<nb,bs>>(A, x, y); }

similarly simple for CSR version

17 /57

We're not done yet

@ this code

1 | __global__ spmv_dev(A, x, y) {

2 k = blockDim.x * blockIdx.x + threadIdx.x;
3 if (k < nnz) {

4 i,j,Aij = A.elems[k];

5 y[il += Aij * x[j];

6 }

713

does not work yet

@ the device cannot access elements of A, x and y on the host
@ there is a race condition when updating y[i]

18 /57

Keywords for functions

@ _global__, __device__, __host__

callable from

code runs on

__global__
__device__
__host__

host /device
device
host

device
device
host

e _global _ functions cannot return a value (must be void)

@ you can have both __host__ and __device__in front of a
definition, which generates two versions (device and host)

19/ 57

Macros

e convenient when writing a single file that works both on CPU
and GPU

@ _NVCC__: a macro defined when compiled by nvce

#ifdef __NVCC__

// GPU implementation
#else

// CPU implementation

#endif

[VR RN

@ __CUDA_ARCH__ : a macro defined when copiled for device

__device__ __host__ f(...) {
#ifdef __CUDA_ARCH__
// device code
#else
// host code
#endif

}

N

IECN

20/57

@ Overview

© CUDA Basics

© Kernels

@ Threads and thread blocks

© Communicating data between host and device

@ Data sharing among threads in the device

@ Choosing a block size

21 /57

Threads and thread blocks (recap)

o a kernel specifies the action of ¢ CUDA thread

e when you launch a kernel you specify
o the number of thread blocks (nb) and

e the thread block size = the number of threads in a single

thread block (bs),
to effectively create (nb x bs) threads

a thread block (bIoclem X threads)

threadIdx.x=0 /

L

blockldx.x=0 blockIdx v1 blockldxx 2

o E PR B - jll' 1

the grld (grldD|m X thread blocks)

but why you need two separate numbers?

22 /57

Why two numbers (bs and nb)?

a single thread block is sent to a single SM and stays there until it

finishes

GPU sends a e Block o \sM

i |

E

E

f<<<nb,bs>>(...)

23 /57

The way thread block boundaries are
semantically visible

thread blocks

= =T

24 /57

The way thread block boundaries are
semantically visible

o CUDA API exposes “shared memory”, a small cache-like
memory only shared within a single thread block

thread blocks

"shared memory"

I — 24/57

Nalahal marmar s

The way thread block boundaries are
semantically visible

o CUDA API exposes “shared memory”, a small cache-like
memory only shared within a single thread block

e CUDA API exposes some synchronization/coordination
primitives (e.g., __syncthreads() or reduction) only usable
within a single thread block

thread blocks

=E SEaET

"share'a‘?‘ﬁévrh‘ory" __syncthreads(), reduction

Nalahal marmar s 24 /57

The way thread block boundaries are
semantically visible

o CUDA API exposes “shared memory”, a small cache-like
memory only shared within a single thread block

e CUDA API exposes some synchronization/coordination
primitives (e.g., __syncthreads() or reduction) only usable
within a single thread block

@ unless you rely on these primitives, choosing the thread block
size is largely a performance (not a correctness) issue

thread blocks

;syncth eads(), reduction

"shared memory"

Nalahal marmar s 24 /57

@ Overview

© CUDA Basics

© Kernels

@ Threads and thread blocks

© Communicating data between host and device

@ Data sharing among threads in the device

@ Choosing a block size

25 /57

Moving data between host and device

@ host and device memory are separate
e the device cannot access data on the host and vice versa (at

1
2

least not directly by hardware until recently)
@ i.e., the following does not work

double a[n];

f£<<<nb,bs>>>(a) ;

__global__ £

. ali]
}

(double * a) {

... // this will segfault

host (CPU)

device (GPU)

26 /57

Moving data between host and device

@ host and device memory are separate

e the device cannot access data on the host and vice versa (at
least not directly by hardware until recently)

@ i.e., the following does not work

1 | double al[n];
2 | £<<<nb,bs>>>(a);

__global__ f(double * a) {
. alil ... // this will segfault
}

host (CPU) device (GPU)

26 /57

Two more things you must master: cudaMalloc
and cudaMemcpy

@ you need to

host (CPU) device (GPU)

27 /57

Two more things you must master: cudaMalloc
and cudaMemcpy

@ you need to
Q@ allocate data on device (by cudaMalloc) — device memory

host (CPU) device (GPU)

27 /57

Two more things you must master: cudaMalloc
and cudaMemcpy

@ you need to

@ allocate data on device (by cudaMalloc) — device memory
© move data between the host and the device (by cudaMemcpy)

host (CPU) device (GPU)

27 /57

Two more things you must master: cudaMalloc
and cudaMemcpy

@ you need to

@ allocate data on device (by cudaMalloc) — device memory
© move data between the host and the device (by cudaMemcpy)
@ give the kernel the pointer to the device memory

host (CPU) device (GPU)

27 /57

Two more things you must master: cudaMalloc
and cudaMemcpy

@ you need to

@ allocate data on device (by cudaMalloc) — device memory
© move data between the host and the device (by cudaMemcpy)
@ give the kernel the pointer to the device memory

e note: call cudaMalloc and cudaMemcpy on the host, not on
the device

host (CPU) device (GPU)

27 /57

Typical steps to send data to the device

@ allocate data of the same size both on host and device

1 | double * a = ...; // any valid address will do (malloc, Evariable, etc.)
2 | double * a_dev = 0;
3 | cudaMalloc((void **)&a_dev, sz);

@ the host works on the host data

1 [for C ... {alil = ... } // whatever initialization you need

@ copy the data to the device

1 [cudaMemcpy(a_dev, a, sz, cudaMemcpyHostToDevice);

@ pass the device pointer to the kernel

1 [f<<<nb,bs>>>(a,dev, L)

@ often a good idea to have a struct encapsulating both pointers

1 | typedef struct {

2 double * a; // host pointer
3 double * a_dev; // device pointer
4 C } my_struct;

28 / 57

Typical steps to retrieve the result

@ allocate data of the same size both on host and device

1 | double * r = ... ;
2 | double * r_dev = 0;
3 | cudaMalloc((void **)&r_dev, sz);

© pass the device pointer to the kernel

1 [f<<<nb,bs>>>(..., r_dev);

@ copy the data to the host

1 (cudaMemcpy(r, r_dev, sz, cudaMemcpyDeviceToHost) ;

29 /57

Unified Memory

e recent NVIDIA GPUs support Unified Memory that
eliminate the need for explicit data movement between host
and device memory and dual pointer management

e at the heart of it is cudaMallocManaged, which is like
cudaMalloc but is directly accessible from host CPU too

30/57

Typical steps to send data to the device with
Unified Memory

@ allocate data of the same size both on host and device

1
2

double * a = 0;
cudaMallocManaged((void **)&a, sz);

@ the host works on the host data

1 [for C ...) {alil = ... } // whatever initialization you need

@ pass the pointer to the kernel

1 [f<<<nb,bs>>>(a,)

31/57

Typical steps to retrieve the result with Unified
Memory

Q allocate data with cudaMallocManaged

1
2

double * r = 0;
cudaMallocManaged((void **)&r, sz);

@ pass the device pointer to the kernel

1 (f<<<nb,bs>>>(..., r);

@ make sure threads finished their work

1 [cudaDeviceSynchronize();

32/57

@ Overview

© CUDA Basics

© Kernels

@ Threads and thread blocks

© Communicating data between host and device
© Data sharing among threads in the device

@ Choosing a block size

33/57

Data sharing among threads in the device

@ basics : memory allocated via cudaMalloc(Managed)? are
shared among all threads (global memory)
e a write by a thread will be visible to all others (sooner or
later)
e shared memory :
e hardware terms: a small on-chip memory as fast as caches,
not coherent across SMs
e software view: memory shared only within a thread block
e other weirder memory types not covered in the lecture
(constant and texture)
thread blocks

T

il

e INL BT]

_sync%eads(), reduction

"shared memory"

"global memory" 34 /57

How to resolve race conditions on global /shared
memory’?

@ CUDA threads run concurrently so they are susceptible to
race conditions as in CPUs

1 | __global__ spmv_dev(A, x, y) {

2 k = blockDim.x * blockIdx.x + threadldx.x; // thread id
3 if (k < nnz) {

4 i,j,Aij = A.elems_dev[k];

5 y[il += Aij * x[j];

6 }

712

35/57

Resolving race condition on CUDA

e atomic accumulations (atomicAdd and other functions)

e forget about mutual exclusion (no #pragma omp critical
equivalent)

@ barrier synchronization, upon which you can built reductions

e reduction, but only within a single thread block

OpenMP CUDA
atomic accumulation | pragma atomic atomicAdd
mutual exclusion pragma critical
or omp_lock_t
barrier pragma barrier cooperative thread group
reduction pragma reduction | only within a thread block,
or DIY with barrier

36 /57

Atomic accumulations

e consider the following (trivial) example

int * a;

cudaMallocManaged (&a, sizeof(int) * nb * bs);
for (i=0; i<nb*bs; i++) al[i] = 1;
sum<<<nb,bs>>>(a);

cudaDeviceSynchronize() ;

printf("sum = %d\n", al01);

W~

(SRS)

o the goal is to guarantee it always prints the sum of all
elements in the array (= nb X bs)

@ a race-prone version

1 | __global__ void f(int * a) {
2 int i = thread id;

3 if (i > 0) a[0] += alil;
4|3

37 /57

Atomic accumulations

e atomic accumulations are supported by the hardware and
CUDA API
e atomicAdd(p, z) =

1 | #pragma omp atomic
2 *p 4= 1

in OpenMP
e search the CUDA toolkit documentation for “atomicAdd”

@ there are other primitives, such as compare-and-swap

e fix our example

__global__ void f(int * a) {

int i = thread id;

if (i > 0) atomicAdd(&a[0], alil);
}

AN e

38 /57

A working version of COO SpMV

LR OGN W@ v~

__global__ spmv_dev(A, x, y) {
k = thread id;
if (k < nnz) {
i,j,Aij = A.elems_dev[k];
atomicAdd(&y[il, Aij * x[jl1);
}
}

make sure A.elems_dev, x and y point to device memory
(not shown)

note: CSR is simpler to work with if you don’t parallelize
within a row

39 /57

Barrier synchronization

@ barrier is a mechanism to ensure “all threads reached a point”
e useful to ensure changes made by a thread is visible all others

o CUDA used to support barriers only within a single thread
block (__syncthreads())

e it now supports barriers for all threads (C. Cooperative

Groups)
T
R FEEEELT

[
] [T

barrer

40 /57

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#cooperative-groups
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#cooperative-groups

Cooperative groups (1)

e (important) when using the following features, launch a
kernel by

1
2

void * args[] = { a0, a1, ... };
cudaLaunchCooperativeKernel((void *)f, nb, bs, args);

instead of the ordinary

1 (f<<<nb,bs>>>(a0, al, ...);

@ common setup

#include <cooperative_groups.h>
namespace cg = cooperative_groups; // save typing

1
2

41 /57

Cooperative groups (2)

e data representing a group

1

1 [cg: :thread_block g = cg::this_thread_block(); // thread block

(

cg::grid_group g = cg::this_grid(); // all threads

@ barrier synchronization

1 [g.sync(); // barrier all theads in g participate

2

group actually provides a cleaner way to know thread ID and

number of threads

unsigned long long idx
unsigned long long nth

g.thread_rank(); // my ID in g
g.size(); // num threads in g

42 /57

Building reduction on barrier

[l [][]][]]7]"
barrier =———
————
2 2] 22T 2] 2 2] 2] 222 a[a[a[a[a]a]1]1]"
[4]4]a]4]+ 2?2]2]2]2]1]1]1]1]1]1]1]1]1]1]1‘

ELLLEEEEEEA A

[1A|/s s[afal2]2 2] 22 [[[[]] 1]]

B

1| --global__ e invariant: “sum(c[0:m])
2 | void sum(double * ¢, long n) { . by -
3| //return c[0] + .. + c[n—1] is the sum”, it repeats
4 cg::grid_group g = cg::this_grid(); halving m
5 ull i = g.thread_rank();
6 ull h; // ull: unsigned long long @ note: it may not be most
7 for (longm =n; m > 1; m = h) { - . .
s b= (me+1) /2 efficient; reducing values
9 if (i +h <m) cli] += cli + hl; within a single block first
10 g.sync();
gl 33 may be better

43 /57

CUDA shared memory

e CUDA programs can allocate a “shared memory” to each
thread block

1 [f<<<nb,bs,S>>>(. L)

e from CUDA program’s perspective, it is a memory only
shared within a thread block and only active during the thread
block’s lifetime

e the term shared memory is a misnomer, IMO; ordinary
memory you allocate via cudaMalloc is shared by all threads
e local memory or something will be a more appropriate name
e physically, it is a cache-like memory faster than global
memory
@ cach SM has a fixed amount of shared memory (A100 :
164KB)
Sx < shared memory per SM

44 /57

https://docs.nvidia.com/cuda/ampere-tuning-guide/index.html#sm-occupancy

Accessing CUDA shared memory

e specify the shared memory size on a kernel call and a kernel
accesses it by declaring variables or arrays with __shared__

__shared__ int al[n];
__shared__ char b[m];

1
2

e if the data size (n or m above) is not a compile-time constant,
obtain the starting address of the shared memory by

1 [extern __shared__ char whatever[];

e it’s your responsibility to use appropriate part of it. e.g.,

int * a = (int*)whatever;
char * b = (char *)&al[n];

1
2

@ shared memory is a way to efficiently communicate among
threads within a block
o GPU has nowadays processor-managed caches, so how crucial

it is to performance is somewhat changing over time
45 /57

@ Overview

© CUDA Basics

© Kernels

@ Threads and thread blocks

© Communicating data between host and device

@ Data sharing among threads in the device

@ Choosing a block size

46 /57

Choosing a good block size for performance

e the question is, when you create a number of, say 10000,
threads, how you divide them into thread blocks?

£<<<1, 10000>>>(x,
£<<<10, 1000>>>(x,
£<<<100, 100>>>(x,
£<<<1000, 10>>>(x,
£<<<10000, 1>>>(x,

Gr N L v~
<<
N NNNN
Ll

and countless other ways ...
e the goal is to run an enough number of threads
simultaneously so they wutilize the hardware capacity of an SM
- . N N .
) X He He 2L

< < i<

P25 I I I, P2 I I I P2 I I I, P I Il B

N N N I JV\}

@ to this end, let’s understand what a GPU actually does,

given a thread block size and the number of blocks .
47/5

Parallelism within an SM

consists of three levels
thread C warp C thread block C SM

48 /57

Parallelism within an SM

consists of three levels
thread C warp C thread block C SM
e a group of 32 CUDA threads makes a warp

i

a warp (32 CUDA threads)

48 /57

Parallelism within an SM

consists of three levels
thread C warp C thread block C SM
e a group of 32 CUDA threads makes a warp
e a group of [bs/32] warps makes a thread block

- -

48 /57

Parallelism within an SM

consists of three levels
thread C warp C thread block C SM

e a group of 32 CUDA threads makes a warp

e a group of [bs/32] warps makes a thread block

e and there are multiple thread blocks executing simultaneously
on a single SM

eEEE EE el
H%??" i EEEEL_EE B

TW o FEFE EH

32 CUDA thre. d
a thread block

awarp (3

N

Uy

Uy

streaming multiprocessor

48 /57

Warps

@ a warp is the unit of instruction execution
@ 32 threads in a single warp share an instruction pointer (a
warp =~ a CPU thread executing 32-way SIMD instructions)
e at every cycle, an SM selects a few (actually, < 2) warps and
execute them
o =
e there is rarely a point in making bs < 32 or not a multiple of
32 (ramainder threads consume resources but perform no
useful work)
e you want to make 32 threads branch in the same way (avoid
warp divergence)

i

awarp (32 CUDA threads)

49 /57

Thread blocks

e a thread block is the unit of dispatching to an SM

e conceptually, a kernel launch f<<<nb, ...>>>(x, y, ...)
puts nb blocks in a queue, which GPU dispatches to SMs, one
block at a time

@ once a block starts running, they stay on the SM until it
finishes and occupies registers and shared memory throughout

e = the number of blocks simultaneously running on an SM is
limited by registers and shared memory a thread block uses

ARl <

g B e

warp (32 CUDA thre: d shared memory (S,)
a thread block (W, warps)

U

~—’UU‘

=N

="
"

50 /57

Registers and shared memory

@ registers

e hold local and temporary variables of threads

e the size is determined by your program and the compiler
@ shared memory

e can be allocated when launching a kernel by

1 [f<<<nb, bs, Sp>>>(x, y, z, ...)

and is shared within a thread block

Semalaal s -

e = (Gl [

e m -

awarp (32 CUDA threads) shared memory (S,)

a thread block (W, warps)

Hardware limits

e all numbers are per SM
e A100 (compute capability 8.0)

registers 65336 x 32 bits
shared memory 164 KB
warps that can simultaneously run 64
thread blocks that can simultaneously run 32
e V100 (compute capability 7.0)
registers 65336 x 32 bits
shared memory 96 KB
warps that can simultaneously run 64
thread blocks that can simultaneously run 32

52 /57

Putting them together

blocks that will simultaneously run on an SM

given (from the programmer or the compiler)
@ T} : the number of threads per block,
e 5, size per block, and
@ R : registers per thread,

calculate various resources per block
e warps per block : Wy, = [T},/32]

° per block : =32R; x W,
e B E Wﬂ B
S, e EEEEL. m
BERE | TIIEIZIT el
SRR
R R

a thread block (W, warps)

streamina multiprocessor

53 /57

Putting them together

e the number of blocks that simultaneously run on an SM (nb)
nb = min(|65536/R;]|, |164K/S, |, |64/W,] ,32)
= min([2048/(R1Wy)], [164K/Sy] , |64/Ws] , 32)
e the number of warps simultaneously run on an SM (nw)
nw = Wy-nb
= Wy -min(|2048/(RW,)], |164K/S,], [64/W,] , 32)

| mWﬂ y
gggl [dd HQQT HW

R e e e e e e B))) [cld]

IETT

2EES §E
clolelo e
o R e
" awarp (32 CUDA threads) shared memor) Y (Se) T T T
a thread block (W, warps)

streaming multiprocessor

54 /57

Takeaways (often good thread block sizes)

W, - min(| 2048/ (RyW3)] , | 164K /S,] , |64/ W3] ,32)

if we ignore factors that come from R; and .5, a guideline is to
run the maximum 64 warps simultaneously and it can be
accomplished by

e putting at least two warps in a block (so 64/W}, < 32) and
@ chooseing the number of warps per block that divides 64
e that is, W), = 2,4,8,16,32 (or T, = 64, 128,256,512, 1024)

55 /57

Remarks

@ 64 warps is merely an upper bound that

e may not be necessary to get the maximum performance (e.g.,
floating point performance, whose limit is 2-warp (= 64)
FMAs per cycle) and

e may not be achievable due to other constraints (registers and
shared memory)

e the above takeaway is a rule of thumb to eliminate bad
thread block sizes

56 /57

Occupancy calculator

e NVIDIA used to provide a simple Excel to give you how
many warps can run simultaneously given block size (7T}),
shared memory per block (Sy), and registers per thread (R;)

e a small web page doing the same at
https://xmartlabs.github.io/cuda-calculator/

57 /57

https://docs.nvidia.com/cuda/cuda-occupancy-calculator/index.html
https://xmartlabs.github.io/cuda-calculator/

	Overview
	CUDA Basics
	Kernels
	Threads and thread blocks
	Communicating data between host and device
	Data sharing among threads in the device
	Choosing a block size

