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Motivation

we’ve learned data access is an important factor that
determines performance of your program

it is thus clearly important to analyze how “good” your
algorithm is, in terms of data access performance

we routinely analyze computational complexity of algorithms
to predict or explain algorithm performance, but it ignores
the differing costs of accessing memory hierarchy (all memory
accesses are O(1))

we like to do something analogous for data access
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Analyzing data access performance of serial

programs

we like to analyze data access cost
of serial programs (on pencils and
papers)

for this purpose, we calculate the
amount of data transferred between
levels of memory hierarchy

in practical terms, this is a proxy
of cache misses

the analysis assumes a simple two
level memory hierarchy
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Model (of a single processor machine)

a machine consists of

a processor,
a fixed size cache (C words), and
an arbitrarily large main
memory
accessing a word not in the
cache mandates transferring the
word into the cache

the cache holds the most recently
accessed C words; ≈

line size = single word
(whatever is convenient)
fully associative
LRU replacement

capacity C

capacity ∞

cache

main memory

For now, we assume a single processor machine.

9 / 80



Model (of a single processor machine)

a machine consists of

a processor,
a fixed size cache (C words), and
an arbitrarily large main
memory
accessing a word not in the
cache mandates transferring the
word into the cache

the cache holds the most recently
accessed C words; ≈

line size = single word
(whatever is convenient)
fully associative
LRU replacement

capacity C

capacity ∞

cache

main memory

For now, we assume a single processor machine.

9 / 80



Gaps between our model and real machines

hierarchical caches:

⇒ each level can be easily modeled
separately, with caches of various
sizes

 

concurrent accesses:
the model only counts the amount of data transferred
in practice the cost heavily depends on how many concurrent
accesses you have
this model cannot capture the difference between link list
traversal and random array access

prefetch:
similarly, this model cannot capture the difference between
sequential accesses that can take advantages of the hardware
prefetcher and random accesses that cannot
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Terminologies

an execution of a program is the sequence of instructions

an interval in an execution is a consecutive sequence of
instructions in the execution

the working set of an interval is the number of distinct words
accessed by the interval

execution
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A basic methodology

to calculate the amount of data transferred in an execution,
1 split an execution into intervals each of which fits in the

cache; i.e.,

working set size of an interval ≤ C (cache size) (∗)

2 then, each interval transfers at most C words, because each
word misses at most only once in the interval

3 therefore,

data transferred ≤
∑

I:all intervals

working set size of I

≤ C≤ C≤ C
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Remarks

the condition (∗) is important to bound data transfers from
above

working set size of an interval ≤ C (cache size) (∗)

each word in an interval misses at most only once, because

the cache is LRU, and
the condition (∗) guarantees that each word is never evicted
within the interval

in practical terms, an essential step to analyze data transfer
is to identify the largest intervals that fits in the cache
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Applying the methodology

we will apply the methodology to some of the algorithms we
have studied so far

the key is to find subproblems (intervals) that fit in the cache

16 / 80



Analyzing the triply nested loop

�
1 for (i = 0; i < n; i++) {

2 for (j = 0; j < n; j++) {

3 for (k = 0; k < n; k++) {

4 C(i,j) += A(i,k) * B(k,j);

5 }

6 }

7 }

key question: which iteration
fits the cache?

+=

+=

+=

i

i

j j

I loop (= entire computation)

an I iteration = J loop

a J iteration = K loop
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Working sets

�
1 for (i = 0; i < n; i++) {

2 for (j = 0; j < n; j++) {

3 for (k = 0; k < n; k++) {

4 C(i,j) += A(i,k) * B(k,j);

5 }

6 }

7 }

level working set size
I loop 3n2

J loop 2n+ n2

K loop 1 + 2n
K iteration 3

+=

+=

+=

i

i

j j

I loop (= entire computation)

an I iteration = J loop

a J iteration = K loop
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Cases to consider

Case 1: the three matrices
all fit in the cache (3n2 ≤ C)

Case 2: a single i iteration
(≈ a matrix) fits in the
cache (2n+ n2 ≤ C)

Case 3: a single j iteration
(≈ two vectors) fits in the
cache (1 + 2n ≤ C)

Case 4: none of the above
(1 + 2n > C)

+=

+=

+=

i

i

j j

I loop (= entire computation)

an I iteration = J loop

a J iteration = K loop
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Case 1 (3n2 ≤ C)

trivially, each element
misses the cache only once.
thus,

R(n) ≤ 3n2 =
3

n
· n3

+= ≤ C

interpretation: each element of A, B, and C are reused n
times
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Case 2 (2n + n2 ≤ C)

the maximum number of
i-iterations that fit in the
cache is:

a ≈ C − n2

2n

each such set of iterations
transfer ≤ C words, so

R(n) ≤ n

a
C =

n

a
(n2+2an) =

(
1

a
+

2

n

)
n3

+=n ≤ Cn n2

+=n
≈ C

n
n2a . . . . . .

×a

interpretation: each element of B is reused a times in the
cache; each element in A or C many (∝ n) times
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A Remark

for a particular access
pattern of the matrix
multiplication, a better
bound can be obtained

as we know all elements of
B are accessed in each
i-iteration, they all stay in
the cache

so

R(n) ≤ 1·n2+
n

a
(2an) =

3

n
·n3

+=n ≤ Cn n2

+=n
≈ C

n
n2a . . . . . .

×a
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Case 3 (1 + 2n ≤ C)

the maximum number of
j-iterations that fit in the
cache is:

b ≈ C − n

n+ 1

each such set of iterations
transfer ≤ C words, so

R(n) ≤ n2

b
C =

n2

b
(n+b(n+1)) =

(
1

b
+ 1 +

1

n

)
n3

+= ≤ C

+= n ≈ C

n

×b

interpretation: each element in B is never reused; each
element in A b times; each clement in C many (∝ n) times
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Case 4 (1 + 2n > C)

the maximum number of
k-iterations that fit in the
cache is:

c ≈ C − 1

2

each such set of iterations
transfer ≤ C words, so

R(n) ≤ n3

c
C =

(
2 +

1

c

)
n3

+= ≤ C

+= c ≈ C

×c

interpretation: each element of B or A never reused; each
element of C reused c times
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Summary

summarize R(n)/n3, the number of misses per multiply-add
(0 ∼ 3)

condition R(n)/n3 range
3n2 ≤ C 3

n
∼ 0

2n+ n2 ≤ C 1
a
+ 2

n
0 ∼ 1

1 + 2n ≤ C 1
b
+ 1 + 1

n
1 ∼ 2

1 + 2n > C 2 + 1
c

2 ∼ 3
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So how to improve it?

in general, the traffic increases when the same amount of
computation has a large working set

to reduce the traffic, you arrange the computation (order
subcomputations) so that you do a lot of computation on the
same amount of data

the notion is so important that it is variously called

compute/data ratio,
flops/byte,
compute intensity, or
arithmetic intensity

the key is to identify the unit of computation (task) whose
compute intensity is high (compute-intensive task)
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The straightforward loop in light of compute

intensity

level flops working set size ratio
I loop 2n3 3n2 2/3n
J loop 2n2 2n+ n2 ∼ 2
K loop 2n 1 + 2n ∼ 1
K iteration 2 3 2/3

the outermost loop has an O(n) compute intensity

yet each iteration of which has only an O(1) compute
intensity
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Cache blocking (tiling)

for matrix multiplication, let l be the maximum number that
satisfies 3l2 ≤ C (i.e., l ≈

√
C/3) and form a subcomputation

that performs a (l × l) matrix multiplication

ignoring remainder iterations, it looks like:�
1 l =

√
C/3;

2 for (ii = 0; ii < n; ii += l)

3 for (jj = 0; jj < n; jj += l)

4 for (kk = 0; kk < n; kk += l)

5 /* working set fits in the cache below */

6 for (i = ii; i < ii + l; i++)

7 for (j = jj; j < jj + l; j++)

8 for (k = kk; k < kk + l; k++)

9 A(i,j) += B(i,k) * C(k,j);

+=l
l
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Cache blocking (tiling)

each subcomputation:

performs 2l3 flops and
touches 3l2 distinct words

it thus has the compute intensity:

2l3

3l2
=

2

3
l ≈ 2

3

√
C

3

or, the traffic is

C ·
(n
l

)3

=
3
√
3√
C
n3

�
1 l =

√
C/3;

2 for (ii = 0; ii < n; ii += l)

3 for (jj = 0; jj < n; jj += l)
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Effect of cache blocking

condition R(n)/n3 range

3n2 ≤ C
3

n
∼ 0

2n+ n2 ≤ C
1

a
+

2

n
0 ∼ 1

1 + 2n ≤ C
1

b
+ 1 +

1

n
1 ∼ 2

1 + 2n > C 2 +
1

c
2 ∼ 3

blocking
3
√
3√
C

below

assume a word = 4 bytes (float)

bytes C l R(n)/n3

32K 8K 52 0.72
256K 64K 147 0.43
3MB 768K 886 0.0059

30 / 80



Recursive blocking

the tiling technique just mentioned targets a cache of a
particular size (= level)

need to do this at all levels (12 deep nested loop)?

we also (for the sake of simplicity) assumed all matrices are
square

for generality, portability, simplicity, recursive blocking may
apply
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Recursively blocked matrix multiply

+=

+=

+=

M M

N N

K

K

C1

C2

A1

A2

C1 C2
B1 B2

A1 A2

B1

B2

�
1 gemm(A,B,C) {
2 if ((M,N,K) = (1, 1, 1)) {
3 c11 += a11 ∗ b11;
4 } else if (max(M,N,K) = M ) {
5 gemm(A1, B, C1);
6 gemm(A2, B, C2);
7 } else if (max(M,N,K) = N ) {
8 gemm(A,B1, C1);
9 gemm(A,B1, C2);

10 } else { /∗ max(M,N,K) = K ∗/
11 gemm(A1, B1, C);
12 gemm(A2, B2, C);
13 }
14 }

it divides flops into two
it divides two of the three matrices, along the longest axis
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Settings

a single word = a single floating point number

cache size = C words

let R(M,N,K) be the number of words transferred between
cache and memory when multiplying M ×K and K ×N
matrices (the cache is initially empty)

let R(w) be the maximum number of words transferred for
any matrix multiply of up to w words in total:

R(w) ≡ max
MK+KN+MN≤w

R(M,N,K)

we want to bound R(w) from the above

to avoid making analysis tedious, assume all matrices are
“nearly square”

max(M,N,K) ≤ 2min(M,N,K)
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The largest subproblem that fits in the cache

the working set of gemm(A,B,C) is (MK +KN +MN)
(words)

it fits in the cache if this is ≤ C

thus we have:
∴ R(w) ≤ C (w ≤ C)
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Analyzing cases that do not fit in the cache

when MK +KN +MN > C, the
interval doing gemm(A,B,C) is two
subintervals, each of which does
gemm for slightly smaller matrices

in the “nearly square” assumption,
the working set becomes ≤ 1/4
when we divide 3 times

to make math simpler, we take it
that the working set becomes

≤ 1
3
√
4
(= 2−2/3) of the original size

on each recursion. i.e.,

+=
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Combined

we have:

R(w) ≤
{

w (w ≤ C)

2R(w/ 3
√
4) (w > C)

when w > C, it takes up to d ≈ log 3√4(w/C) recursion steps
until the working set becomes ≤ C

the whole computation is essentially 2d consecutive intervals,
each transferring ≤ C words
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Illustration

..
.

..
.

w
≤

C

w
≤

C

w
≤

C

· · ·

w

} ≤ C

×1/ 3√4

×1/ 3√4

lo
g

3 √
4
(w

/
C
)

∴ R(w) < 2d · C
= 2

log 3√4
(w/C) · C

= C
(w
C

) 1

log 3√4

=
1√
C
w3/2
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Result

we have:

R(w) ≤ 1√
C
w3/2

for square (n× n) matrices (w = 3n2),

∴ R(n) = R(3n2) =
3
√
3√
C
n3

the same as the blocking we have seen before (not
surprising), but we achieved this for all cache levels
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A practical remark

in practice we stop
recursion when the
matrices become “small
enough”

but how small is small
enough?

when the threshold ≤
level x cache, the
analysis holds for all
levels x and lower

�
1 gemm(A,B,C) {
2 if (A,B,C together fit in the cache) {
3 for (i, j, k) ∈ [0..M ]× [0..N ]× [0..K]
4 cij += aik ∗ bkj ;
5 } else if (max(M,N,K) = M ) {
6 gemm(A1, B, C1);
7 gemm(A2, B, C2);
8 } else if (max(M,N,K) = N ) {
9 gemm(A,B1, C1);

10 gemm(A,B1, C2);
11 } else { /∗ max(M,N,K) = K ∗/
12 gemm(A1, B1, C);
13 gemm(A2, B2, C);
14 }
15 }

on the other hand, we like to make it large, to reduce control
overhead
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Tools to measure cache/memory traffic

analyzing data access performance is harder than analyzing
computational efficiency (ignoring caches)

the code reflects how much computation you do
you can experimentally confirm your understanding by
counting cycles (or wall-clock time)

caches are complex and subtle

the same data access expression (e.g., a[i]) may or may not
count as the traffic
gaps are larger between our model and the real machines
(associativity, prefetches, local variables and stacks we often
ignore, etc.)

we like to have a tool to measure what happened on the
machine → performance counters
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Performance counters

recent CPUs equip with performance counters, which count
the number of times various events happen in the processor

OS exposes it to users (e.g., Linux perf event open system
call)

there are tools to access them more conveniently

command: Linux perf (man perf)
library: PAPI http://icl.cs.utk.edu/papi/
GUI: hpctoolkit http://hpctoolkit.org/, VTunes, . . .
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perf command

perf command is particularly easy to use�
1 perf stat command line

will show you cycles, instructions, and some other info

to access performance counters of your interest (e.g., cache
misses), specify them with -e�

1 perf stat -e counter -e counter ... command line

to know the list of available counters�
1 perf list
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perf command

many interesting counters are not listed by perf list

we often need to resort to “raw” events (defined on each CPU
model)

consult intel document 1

if the table says Event Num = 2EH, Umask Value = 41H, then
you can access it via perf by -e r412e (umask; event num)

1Intel 64 and IA-32 Architectures Developer’s Manual: Volume 3B: System

Programming Guide, Part 2. Chapter 19 “Performance Monitoring Events”

http://www.intel.com/content/www/us/en/architecture-and-technology/

64-ia-32-architectures-software-developer-vol-3b-part-2-manual.html
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PAPI library

library for accessing performance counters

http://icl.cs.utk.edu/papi/index.html

basic concepts

create an empty “event set”
add events of interest to the event set
start counting
do whatever you want to measure
stop counting

visit http://icl.cs.utk.edu/papi/docs/index.html and
see “Low Level Functions”

47 / 80

http://icl.cs.utk.edu/papi/index.html
http://icl.cs.utk.edu/papi/docs/index.html


PAPI minimum example (single thread)

A minimum example with a single thread and no error checks�
1 #include <papi.h>

2 int main() {

3

4

5

6

7

8

9 { do whatever(); }
10

11

12 return 0;

13 }
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PAPI minimum example (single thread)

A minimum example with a single thread and no error checks�
1 #include <papi.h>

2 int main() {

3 PAPI library init(PAPI_VER_CURRENT);

4 int es = PAPI_NULL;

5 PAPI create eventset(&es);

6 PAPI add named event(es, "ix86arch::LLC_MISSES");

7 PAPI start(es);

8 long long values[1];

9 { do whatever(); }
10 PAPI stop(es, values);

11 printf("%lld\n", values[0]);

12 return 0;

13 }
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Compiling and running PAPI programs

compile and run�
1 $ gcc ex.c -lpapi

2 $ ./a.out

3 33

papi avail and papi native avail list available event
names (to pass to PAPI add named event)

perf raw::rnnnn for raw counters (same as perf command)
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Error checks

be prepared to handle errors (never assume you know what
works)!

many routines return PAPI OK on success and a return code
on error, which can then be passed to
PAPI strerror(return code) to convert it into an error
message

encapsulate such function calls with this�
1 void check_(int ret, const char * fun) {

2 if (ret != PAPI_OK) {

3 fprintf(stderr, "%s failed (%s)\n", fun, PAPI strerror(ret));

4 exit(1);

5 }

6 }

7

8 #define check(call) check_(call, #call)
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A complete example with error checks�
1 #include <stdio.h>

2 #include <stdlib.h>

3 #include <papi.h>

4
5 void check_(int ret, const char * fun) {

6 if (ret != PAPI_OK) {

7 fprintf(stderr, "%s failed (%s)\n", fun, PAPI strerror(ret));

8 exit(1);

9 }

10 }

11 #define check(f) check_(f, #f)

12
13 int main() {

14 int ver = PAPI_library_init(PAPI_VER_CURRENT);

15 if (ver != PAPI_VER_CURRENT) {

16 fprintf(stderr, "PAPI_library_init(%d) failed (returned %d)\n",

17 PAPI_VER_CURRENT, ver);

18 exit(1);

19 }

20 int es = PAPI_NULL;

21 check(PAPI_create_eventset(&es));

22 check(PAPI_add_named_event(es, "ix86arch::LLC_MISSES"));

23 check(PAPI_start(es));

24 { do whatever(); }
25 long long values[1];

26 check(PAPI_stop(es, values));

27 printf("%lld\n", values[0]);

28 return 0;

29 }
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Multithreaded programs

must call PAPI thread init(id fun) in addition to
PAPI library init(PAPI VER CURRENT)

id fun is a function that returns identity of a thread (e.g.,
pthread self, omp get thread num)

each thread must call PAPI register thread

event set is private to a thread (each thread must call
PAPI create eventset(), PAPI start(), PAPI stop())
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Multithreaded example�
1 #include <stdio.h>

2 #include <stdlib.h>

3 #include <omp.h>

4 #include <papi.h>

5 /∗ check and check omitted (same as single thread) ∗/
6 int main() {

7 /∗ error check for PAPI library init omitted (same as single thread) ∗/
8 PAPI_library_init(PAPI_VER_CURRENT);

9 check(PAPI thread init((unsigned long(*)()) omp_get_thread_num));

10 #pragma omp parallel

11 {

12 check(PAPI register thread()); /∗ each thread must do this ∗/
13 int es = PAPI_NULL;

14 check(PAPI_create_eventset(&es)); /∗ each thread must create its own set ∗/
15 check(PAPI_add_named_event(es, "ix86arch::LLC_MISSES"));

16 check(PAPI_start(es));

17 { do whatever(); }
18 long long values[1];

19 check(PAPI_stop(es, values));

20 printf("thread %d: %lld\n", omp_get_thread_num(), values[0]);

21 }

22 return 0;

23 }
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Several ways to obtain counter values

PAPI stop(es, values): get current values and stop counting

PAPI read(es, values): get current values and continue
counting

PAPI accum(es, values): accumulate current values, reset
counters, and continue counting
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Useful PAPI commands

papi avail, papi native avail: list event counter names

papi mem info: report information about caches and TLB
(size, line size, associativity, etc.)
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Matching the model and measurements

(measurements)

warnings:

counters are highly CPU model-specific
do not expect portability too much; always check perf list,
perf native avail, and the Intel manual
some counters or combination thereof cannot be monitored
even if listed in perf native avail (you fail to add it to
event set; never forget to check return code)
virtualized environments have none or limited support of
performance counters; Amazon EC2 environment shows no
counters available (; ;) (I don’t know if there is a
workaround)

the following experiments were conducted on my Haswell
(Core i7-4500U) laptop

L1 : 32KB, L2 : 256KB, L3 : 4MB
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Matching the model and measurements

(measurements)

relevant counters

L1D:REPLACEMENT

L2 TRANS:L2 FILL

MEM LOAD UOPS RETIRED:L3 MISS

cache miss counts do not include line transfers hit thanks to
prefetches

L1D:REPLACEMENT and L2 TRANS:L2 FILL seem closer to
what we want to match our model against

I could not find good counters for L3 caches, so measure
ix86arch::LLC MISSES
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Matching the model and measurements

counters give the number of cache lines transferred

a line is 64 bytes and a word is 4 bytes, so we assume:
words transferred ≈ 16× cache lines transferred

recall we have:

R(w) ≤ 1√
C
w3/2

and R(w) is the number of words transferred

so we calculate:

the number of cache lines transferred

w3/2

(and expect it to be close to
1√
C

for w > C)
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1/
√
C

level C 1√
C

L1 8K 0.011048 · · ·
L2 64K 0.003906 · · ·
L3 1M 0.000976 · · ·
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L1 (recursive blocking)

out/tex/data/mm/mm blocking l1rep 10000

they are not constant as we expected
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What are the spikes?

it spikes when M = a large power of two (128|M , to be more
specific)

analyzing why it’s happening is a good exercise for you

whatever it is, I told you avoid it!

let’s remove M ’s that are multiple of 128
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L1 (remove multiples of 128)

out/tex/data/mm/mm blocking l1rep 128

M value
1808 0.0187
1856 0.0178
1872 0.0177
1936 0.0170
1984 0.0159
2000 0.0167

1√
C

≈ 0.011048 · · ·
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L1 (compare w/ and w/o recursive blocking)

out/tex/data/mm/mm compare l1rep 128
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L1 (remove multiples of 64)

out/tex/data/mm/mm compare l1rep 64
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L1 (remove multiples of 32)

out/tex/data/mm/mm compare l1rep 32
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L2

out/tex/data/mm/mm blocking l2fill 10000
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L2 (remove multiples of 128)

out/tex/data/mm/mm blocking l2fill 128

M value
1808 0.00499
1856 0.00481
1872 0.00511
1936 0.00470
1984 0.00476
2000 0.00505

1√
C

≈ 0.003906 · · ·
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L2 (compare w/ and w/o recursive blocking)

out/tex/data/mm/mm compare l2fill 128
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L2 (no multiples of 64)

out/tex/data/mm/mm compare l2fill 64
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L2 (no multiples of 32)

out/tex/data/mm/mm compare l2fill 32
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Review: (serial) merge sort�
1 /∗ sort a..a end and put the result into
2 (i) a ( if dest = 0)
3 ( ii ) t ( if dest = 1) ∗/
4 void ms(elem * a, elem * a_end,

5 elem * t, int dest) {

6 long n = a_end - a;

7 if (n == 1) {

8 if (dest) t[0] = a[0];

9 } else {

10 /∗ split the array into two ∗/
11 long nh = n / 2;

12 elem * c = a + nh;

13 /∗ sort 1st half ∗/
14 ms(a, c, t, 1 - dest);

15 /∗ sort 2nd half ∗/
16 ms(c, a_end, t + nh, 1 - dest);

17 elem * s = (dest ? a : t);

18 elem * d = (dest ? t : a);

19 /∗ merge them ∗/
20 merge(s, s + nh,

21 s + nh, s + n, d);

22 }

23 }

�
1 /∗ merge a beg ... a end
2 and b beg ... b end
3 into c ∗/
4 void

5 merge(elem * a, elem * a_end,

6 elem * b, elem * b_end,

7 elem * c) {

8 elem * p = a, * q = b, * r = c;

9 while (p < a_end && q < b_end) {

10 if (*p < *q) { *r++ = *p++; }

11 else { *r++ = *q++; }

12 }

13 while (p < a_end) *r++ = *p++;

14 while (q < b_end) *r++ = *q++;

15 }

note: as always, actually
switch to serial sort below a
threshold (not shown in the
code above)
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Memory ↔ cache transfer in merge sort (1)

base case

merge sorting n elements takes two arrays of n elements each,
and touch all elements of them ⇒ the working set is 2n words

thus, it fits in the cache when 2n ≤ C

∴ R(n) ≤ 2n (2n ≤ C)
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Memory ↔ cache transfer in merge sort (2)

when n > C/2, the whole
computation is two recursive
calls + merging two results�

1 long nh = n / 2;

2 /∗ sort 1st half ∗/
3 ms(a, c, t, 1 - dest);

4 /∗ sort 2nd half ∗/
5 ms(c, a_end, t + nh, 1 - dest);

6 ...

7 /∗ merge them ∗/
8 merge(s, s + nh,

9 s + nh, s + n, d);

n

n/2 n/2

merge

∴ R(n) ≤ 2R(n/2) + 2n (n > C/2)
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Combined

so far we have:

R(n) ≤
{

2n (n ≤ C/2)
2R(n/2) + 2n (n > C/2)

for n > C/2, it takes at most d ≈ log 2n
C

divide steps until it
becomes ≤ C/2
thus,

R(n) ≤ 2n · d = 2n log
2n

C

..
.

..
.

≤
C
/
2

≤
C
/
2

≤
C
/
2

· · ·

n

} ≤ 2n

} ≤ 2n

} ≤ 2n

} ≤ 2n

<
lo
g
(2

n
/
C
)
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Improving merge sort

so what can we do to improve this?

R(n) ≤ 2n log
2n

C

there are not much we can do to improve a single merge (∵
each element of arrays is accessed only once)

so the hope is to reduce the number of steps
(
log 2n

C

)
⇒

multi-way merge
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Summary

understanding and assessing data access
performance (e.g., cache misses) is
important

I hope I have taught that it’s a subject of
a rigid analysis, not a black art

the key for the assessment/analysis is to
identify a unit of computation that fits in
the cache, not to microscopically follow
the state of the cache

the key to achieve good cache
performance is to keep the compute
intensity of cache-fitting computation
high
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Next step

our next goal is to understand data access performance of
parallel algorithms

we are particularly interested in performance of dynamically
scheduled task parallel algorithms

to this end, we first describe schedulers of task parallel
systems
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