
OSレベル セキュリティの基本

田浦

Contents

Contents
序章 . 2
ファイルに対するアクセス制御 . 8
アクセス許可関連の属性 基本編 . 13
プロセスの実効 UID . 31
グループについて . 45

1 / 57

序章

(サイバー) セキュリティの基本 3要件

• 秘匿性 (Confidentiality) ≈ 情報 (データ) を勝手に読まれない
• 完全性 (Integrity) ≈ 情報 (データ) を勝手に変更されない, 壊されない (書かれない)
• 可用性 (Availability) ≈ 必要なときに使える

3 / 57

侵害される要因は様々…

• ユーザの誤操作 (宛先間違い)
• 管理者誤設定
• パスワードクラッキング
• フィッシング (偽サイトへの誘導)
• アプリケーション脆弱性
• OS脆弱性
• …

4 / 57

セキュリティと OS

• OSがデータへのアクセスをどう制御しているか・いないかを知ることはセキュリ
ティの基本

• セキュリティ保証の方法としては暗号がすぐに思い浮かぶ
‣ 暗号は多くの場合, システムを信用せずに秘匿性や完全性を保証する手段になる
‣ 一方どんな暗号もコンピュータ上で実現されている限り, 鍵の書かれたファイル,
暗号化・復号プロセス, などの保護が前提であり, それには OSの理解が必須

‣ 暗号化しなくても得られる保護の理解も実践的には欠かせない

5 / 57

本講義の範囲

• セキュリティ全般を扱うことは無理 (別講義があります)
• 本講義の範囲: 1台の計算機 (1 OS管理下) に複数のユーザが
いるとき, データの (秘匿性, 完全性) がどう保護されるか?
‣ 焦点: ファイルのアクセス制御, プロセスが持つ権限に関す
る理解

‣ ネットワーク (e.g., web) アプリケーションのセキュリティを
理解する基礎

‣ ネットワークアプリケーションでは中心となる技術 (暗号,
認証, etc.) は扱わない

6 / 57

(復習) OSがアプリケーションを保護する基本枠組み

• プロセスのアドレス空間 (≈ メモリ上のデータ) をお互いに分離
‣ プロセスがシステムコール無しにアクセスできるのはプロセス内のデータのみ(*)
‣ ⇒ システムコール経由のファイルへのアクセス(*)を制御することが基本

• (*) 「ファイル」以外にも制御すべきもの (ネットワークなど) があり個別に議論が
必要だがまずはファイルに焦点

7 / 57

ファイルに対するアクセス制御

ファイルに対するアクセス制御の基本

• アクセス制御 ≈ open, exec系など, ファイルをアクセスする
システムコールの成否

• 成否を決める 2要素

1.「誰」がファイルをアクセスしているか
• → openを実行したプロセスの
‣ 実効ユーザ ID (Effective User ID, EUID)
‣ 実効グループ ID (Effective Group ID, EGID)
‣ 補助グループ (supplementary groups)

2. そのファイルは「誰に対してどのようなアクセスを許可」
しているか
• → ファイルのアクセス許可 (Access Permission) 属性

実効UID
実効GID
補助グループ

アクセス許可 (mode)

9 / 57

Unixにおける「ユーザ」の実体

• OS (カーネル) が認識している (≈ システムコールで使われる) 「ユーザ」の正体 —
ユーザ ID — は単なる番号
‣ uid_t 型 (実際は整数型)
‣ 実はカーネルはシステムにユーザが何人いるかも「知らない (気にしてない)」

• ログイン時などに使われる見慣れたユーザ名は, ユーザ番号との対応を OS外の仕組
みで決めた物に過ぎない
‣ 対応を決める仕組み: /etc/passwd, LDAP, NIS等
‣ 単独で動作している環境では /etc/passwd, ネットワーク環境では LDAPが普通

10 / 57

Unixにおける「グループ」の実体

• グループ ≈ ユーザの集合
• ユーザ同様, グループの正体 — グループ ID — も単なる番号
‣ gid_t 型 (実際は整数型)

• グループ名 (文字列) も, グループ番号との対応を OS外の仕組みで決めた物に過ぎ
ない
‣ 対応を決める仕組み: /etc/group, LDAP, NIS等
‣ 単独で動作している環境では /etc/group, ネットワーク環境では LDAPが普通

11 / 57

特権ユーザ, スーパーユーザ, ルート

• ユーザ番号 0 のユーザはシステムコールレベルで特別扱い
‣ 特権ユーザ (privileged user), スーパーユーザ (superuser), ルート (root) などと呼ば
れる

‣ いわゆるシステム管理者でありほとんどのシステムコールが許可される
•「特権ユーザ」と (CPUの)「特権モード」を混同しないように
‣ rootが実行しているプロセスだからといって, 普段から特権モードで動いているわ
けではない

12 / 57

アクセス許可関連の属性 基本編

ファイルにつくアクセス許可関連の属性

1. ユーザ (User) ≈ そのファイルの「所有者」
2. グループ (Group) ≈ 上記のグループ版
3. アクセス許可 (なぜか mode と呼ばれる)

•「誰」に対する
•「どのような」アクセス
• を許可{する・しない}

ユーザ
グループ
アクセス許可 (mode)

•「ユーザ」「グループ」属性に関する言葉の注
‣「ユーザ」属性はそのファイルの「所有者」というイメージがわかりやすい
‣ 一方「グループ」属性はそのファイルを「所有するグループ」というイメージは
破綻しておりとむしろ混乱する
– そのグループの属するユーザが皆, 「所有している」というわけではない

‣ 実際は両者とも単に, その他大勢のユーザと違う (通常, より緩い) アクセス権限を
与える対象を指定しているだけ

14 / 57

mode — 「誰」に対する「どのような」アクセスの許可 — の実体

•「誰」は以下の 3区分
1. User (ファイルの「ユーザ」属性で指定されたユーザ)
2. Group (ファイルの「グループ」属性で指定されたグループ)
3. Other (それ以外のユーザ)

•「どのような」アクセスかは以下の 3区分
1. 読み出し (Read)
2. 書き込み (Write)
3. 実行 (eXecute)

• ⇒ modeの正体 : 合計 3 × 3 = 9 個の 2値属性 (許可 or 不許可)

R W X
User 1 1 0

Group 1 0 0
Other 0 0 0

15 / 57

アクセス許可関連属性を見る — (お馴染みの) ls

$ ls -l
-rw-r--r-- 1 tau taulab 823 Dec 16 12:55 foo.txt
-rwxr-x--- 1 tau taulab 199 Dec 16 12:55 watch.sh{

ユーザに対する許可

グループに対する許可
その他に対する許可

ユーザ グループ{ {

• ユーザ tau は読み(R), 書き(W), 実行(X)可能
• グループ taulab は読み(R), 実行(X)可能
• その他は何もできない

R W X
User 1 1 1

Group 1 0 1
Other 0 0 0

16 / 57

アクセス許可関連属性を見るシステムコール — stat

struct stat sb;
int err = stat(path, &sb);

• path (ファイルやディレクトリ名) の属性を sb に格納
• sb.st_uid : ユーザ
• sb.st_gid : グループ
• sb.st_mode : 前述の 9通りのアクセス許可 (9 bit) を含む整数

17 / 57

st_mode中の 9つのアクセス許可 bit

上位 bitから順に

数値 (8進数)「誰」による「どんな」アクセス C言語での記号
0400 ユーザ 読み出し S_IRUSR
0200 ユーザ 書き込み S_IWUSR
0100 ユーザ 実行 S_IXUSR
0040 グループ 読み出し S_IRGRP
0020 グループ 書き込み S_IWGRP
0010 グループ 実行 S_IXGRP
0004 その他 読み出し S_IROTH
0002 その他 書き込み S_IWOTH
0001 その他 実行 S_IXOTH

• つまり先の 3 × 3 の 1/0 を表の順に並べた 2進数
• 例: -rwxr-x--- = 111 101 0002 = 07508

18 / 57

stat 中のその他の属性

• stat構造体にはその他にも多くのファイル属性が格納されている
‣ sb.st_size : サイズ
‣ sb.st_mtime : 最後の更新時刻
‣ etc.

• st_mode にも前述の 9つ以外の情報が格納されている (後述)
‣ set-user-ID
‣ set-group-ID
‣ sticky

• つまり, stat ≈ ファイルに関する情報のうち中身以外の情報

19 / 57

stat コマンド

$ stat 10_security.typ
 File: 10_security.typ
 Size: 13668 Blocks: 32 IO Block: 4096 regular file
Device: 252,0 Inode: 178538093 Links: 1
Access: (0644/-rw-r--r--) Uid: (1000/ tau) Gid: (1000/ taulab)
Access: 2024-09-29 02:55:24.449105666 +0900
Modify: 2024-09-28 12:58:37.151968205 +0900
Change: 2024-09-29 02:55:24.449105666 +0900
 Birth: 2024-09-29 02:55:24.449105666 +0900

20 / 57

open (読み出し) の成否

• プロセス𝑃によるファイル𝐹の読み出し open (O_RDONLYや O_RDWR) の成否

0. 𝑃の実効 UID = 0
⇒ OK

1. 𝑃の実効 UID = 𝐹のユーザ
⇒ (𝐹.st_mode & S_IRUSR) ≠ 0 なら OK

2. 𝑃の実効 GID または 𝑃の補助グループ のどれか = 𝐹のグループ
⇒ (𝐹.st_mode & S_IRGRP) ≠ 0 なら OK

3. 上記に該当しない
⇒ (𝐹.st_mode & S_IROTH) ≠ 0 なら OK

• 実効 UID/GID, 補助グループがどう決まるかは後述
‣ さしあたり「実効 UID ≈ プロセスを起動したユーザ」と思っておけば良い

21 / 57

open (書き込み) の成否

• 読み出しのケースとほぼ同様
• 前スライドの S_IRxxx を S_IWxxxにするだけ

22 / 57

exec系システムコールの成否

• openとほぼ同様 (前ページの S_IRxxx を S_IXxxxにするだけ)

• シェルスクリプトを実行する前に
 chmod +x script.sh

としなくてはいけないのはこれが理由 (chmodコマンドについては後述)
• gccなどコンパイラが出力する実行可能ファイルの場合はコンパイラが上記相当を
行っている

23 / 57

ディレクトリに対する R, W, X の意味

• R : 読み出し ≈ そのディレクトリに対する openシステム
コールの成否に影響
‣ 実際問題としてはそのディレクトリのファイル列挙

• W : 書き込み ≈ そのディレクトリ内のファイルに対する
作成 (open)・削除 (unlink)・名前変更の成否に影響

• X : 移動・通過権限
‣ そのディレクトリへの移動 (chdirシステムコール) の
成否に影響

‣ そのディレクトリを含むパスを使ったシステムコール
の成否に影響

x=0

24 / 57

アクセス許可を変更するシステムコール — chmod

int err = chmod(path, mode);

• pathで指定されるディレクトリのアクセス許可 (st_mode) を modeに設定
• mode の指定方法

1. 直接数値 (8 進数 3桁が便利) で指定
2. S_I{R,W,X}{USR,GRP,OTH} を ビット和 | で結んで指定

25 / 57

chmod コマンド

chmod mode path

• システムコールと引数の順番が逆, 動作はほぼ同じ
• mode の指定方法
‣ 数値 (8進数) で直接指定
‣ 記号で指定 who{-,+,=}what

– who は u, g, o の任意個を指定 (空は ugo (全て) と同義)
– what は r, w, x の任意個を指定 (空は文字通り空)
– +は権限追加, -は削除, =はセット

• 例:
‣ chmod 644 path (rw-r--r-- にする)
‣ chmod g+w path (グループの読み出し権限を追加)
‣ chmod +x path (全てに実行権限を追加)

26 / 57

chmod の成否

• プロセス𝑃によるファイル𝐹の chmodの成否 (≈ 管理者または持ち主が変更可)

0. 𝑃の実効 UID が 0
⇒ OK

1. 𝑃の実効 UID = 𝐹のユーザ
⇒ OK

2. 上記に該当せず
⇒ NG

27 / 57

ファイルの{ユーザ, グループ}属性を変更するシステムコール — chown

• システムコール

int err = chown(path, user, group);

• 同名のコマンド

chown user:group path

• どちらも path のユーザ属性を userに, グループ属性を groupに変更する

28 / 57

chownの成否

• プロセス𝑃によるファイル𝐹の chownの成否 (≈ 管理者だけが変更可)
• ユーザ属性が変更される (user ≠ 𝐹のユーザ属性) 場合

0. 𝑃の実効 UID が 0
⇒ OK

1. それ以外
⇒ NG

• ユーザ属性が変更されない (user = 𝐹のユーザ属性) 場合

0. 𝑃の実効 UID が 0
⇒ OK

1. それ以外 (≈ 自分が所属するグループへの変更が可能)
⇒ user ∈ {𝑃の実効 GID} + 𝑃の補助グループ ならば OK

29 / 57

ファイルに対して, できることの平易な言語でのまとめ

open/exec (*) modeの変更 グループの変更 所有者の変更
root ◯ ◯ ◯ ◯
所有者 ◯ ◯ △
所有者以外 ◯

• (*) : modeで許可された場合
• △ : 自分が所属するグループへの変更のみ

30 / 57

プロセスの実効 UID

プロセスの実効 UID

• プロセスの実効 UID (Effective User ID) ≈ そのプロセスが「誰」として動いている
かを表すプロセスの属性

• open, execなどの成否を決める一要素
• (再掲) openの成否

0. 𝑃の実効 UID が 0
⇒ OK

1. 𝑃の実効 UID = 𝐹のユーザ
⇒ (𝐹.st_mode & S_IRUSR) ≠ 0 なら OK

2. …
3. …

• 大雑把には「自分が立ち上げたプロセスの実効 UIDは自分」という当たり前が殆
ど成り立ち, それ以上知らなくてもあまり問題はない …

32 / 57

プロセスの実効 UID

• … だがまさか OSがキーボードを打っている人の顔や指紋を見て「誰」を判断して
いるわけではないので, プロセスの実効 UIDがどういう仕組み (規則) で決まってい
るかを理解することは必要

• 実践的には
‣ ssh, jupyterhub (入力されたユーザ名に応じて適切に他のユーザに成り代わる)
‣ sudo (管理者権限で実行する)

などがシステムコールレベルではどういう仕組みで成り立っているかを理解する鍵

33 / 57

プロセスに付随する 3つの UID

• 実はプロセスには 3つの UIDがついている
1. 実 UID (Real User ID, RUIDまたは単に UID)
2. 実効 UID (Effective User ID, EUID)
3. 保存 UID (Saved User ID, SUID)

• 基本は親プロセスの UIDを全て継承するが, 変更するシステムコールがある

34 / 57

プロセスの {実・実効・保存} UIDを{取得・変更}するシステムコール

• 取得
‣ uid_t 𝑟 = getuid(); — 実 UIDを返す
‣ uid_t 𝑒 = geteuid(); — 実効 UIDを返す
‣ int err = getresuid(&𝑟, &𝑒, &𝑠); — {実,実効,保存}UIDをそれぞれ𝑟, 𝑒, 𝑠に返す

• 変更
‣ int err = setuid(r); ≈ 全 UIDを𝑟にする (詳細後述)
‣ int err = seteuid(e); ≈ 実効 UIDを𝑒にする
‣ int err = setresuid(r, e, s); ≈ {実,実効,保存}UIDをそれぞれ𝑟, 𝑒, 𝑠にする

35 / 57

set?uid それぞれの正確な効果と成否

呼び出したプロセスの{実・実効・保存} UIDを (𝑅,𝐸, 𝑆) と書くことにする

名前 成功条件 効果
setresuid(𝑟, 𝑒, 𝑠) 𝐸 = 0 または {𝑟, 𝑒, 𝑠} ∈ {𝑅,𝐸, 𝑆} (𝑅,𝐸, 𝑆) → (𝑟, 𝑒, 𝑠)
seteuid(𝑒) 𝐸 = 0 または 𝑒 ∈ {𝑅,𝐸, 𝑆} (𝑅,𝐸, 𝑆) → (𝑅, 𝑒, 𝑆)

𝐸 = 0 (𝑅,𝐸, 𝑆) → (𝑒, 𝑒, 𝑒)
setuid(𝑒) 𝑒 ∈ {𝑅,𝐸, 𝑆} (𝑅,𝐸, 𝑆) → (𝑅, 𝑒, 𝑆)

• すぐにわかる通り, 後者 2つは setresuidの特殊形に過ぎない
‣ seteuid(𝑒) ≡ setresuid(𝑅, 𝑒,𝐸)
‣ setuid(𝑒) ≡ 𝐸 == 0 ? setresuid(𝑒, 𝑒, 𝑒) : setresuid(𝑅, 𝑒, 𝑆)

• setuid/seteuidの存在, 謎な動作は歴史的な事情
‣ setresuid は後からでき, かつ POSIX (Unix標準) ではない

36 / 57

ポイント 1

• 実効 UID (𝐸) の変更 ⇒ 権限の変更であり, 明らかに無条件に許してはならない
‣ 基本は管理者プロセス (𝐸 = 0) だけに許される
‣ ただし通常ユーザのプロセス (𝐸 ≠ 0) も, {実・実効・保存} UID 中のどれかになることは可能

• ssh, jupyterhub などが色々なユーザとして動くプロセスを起動する仕組み:
‣ 先祖プロセスは root として (𝐸 = 0 で) 起動される
‣ ユーザ𝑢として認証が済むと, setuid(𝑢) を用いてユーザ𝑢に「成り代わる」

– (𝑅,𝐸, 𝑆) → (𝑢, 𝑢, 𝑢) になる
‣ この状態から他のユーザになり代わる(UIDを変更する)ことは不可能

37 / 57

ポイント 2

• 実効 UID = 0 (𝐸 = 0) であれば無条件で, 任意のユーザに「なりすまし」(UIDを変更
すること)が可能
‣ システムコールレベルではそのユーザの認証 (パスワード要求など) は行わない
‣ set?uid を発行するプログラムが適切な方針・認証を実装する必要がある

38 / 57

ポイント 3

• 通常ユーザ (𝐸 ≠ 0) のプロセスも, {実・実効・保存}UID 中のどれかになることは
可能

• ⇒ 非 root (𝐸 ≠ 0) から root (𝐸 = 0) に「昇格」が可能な場合 (𝑅または𝑆 = 0) もある!
• 例:

(0, 0, 0) →→→→→→→→→→→
seteuid(100)

(0, 100, 0) →→→→→→→→→
seteuid(0)

(0, 0, 0)
• 降格して必要なときにまた昇格するアプリケーションを可能にする
• 例えば普段は一般ユーザで走行, ユーザ𝑢として認証が済んだら𝐸 = 0に昇格して𝑢
に成り代わる

(0, 100, 0) →→→→→→→→→
seteuid(0)

(0, 0, 0) →→→→→→→→
setuid(𝑢)

(𝑢, 𝑢, 𝑢)
•「最小限の権限で動く」という鉄則に沿った設計

39 / 57

実行可能ファイルの set-user-ID 属性

• (再掲) st_mode に格納されている, アクセス許可
9 bit以外の情報
‣ set-user-ID (setuid bit, suid bit)
‣ set-group-ID (setgid bit, sgid bit)
‣ sticky

• set-user-ID bitの効果: プロセス𝑃が, set-user-ID
属性が 1の実行可能ファイル𝐹を (exec系システ
ムコールで) 実行すると, 𝑃の{実効, 保存}UIDを
𝐹のユーザ(𝑢とする)にする
‣ (𝑅,𝐸, 𝑆) → (𝑅, 𝑢, 𝑢)

ユーザ=
set-user-ID = 1

execve(..)

40 / 57

set-user-ID 属性のポイント

• set-user-ID 属性がセットされたファイルを実行するのは, (𝑅,𝐸, 𝑆) = (𝑢, 𝑢, 𝑢) (𝑢 ≠ 0)
の状態からでも実効 UIDを変更できる唯一の手段

• sudo, su など (rootではない) 普通のユーザであっても管理者や他のユーザに「成り
代わる」コマンドにとって必須の仕組み

• sudo, su の実行可能ファイルは
‣ ユーザ属性 (所有者) = 0 (root)
‣ set-user-ID属性をセット

• rootに限らず, あるユーザの権限を他のユーザに与えるための一般的手段
$ which sudo
/usr/bin/sudo
$ ls -l /usr/bin/sudo
-rwsr-xr-x 1 root root 257136 Aug 15 00:41 /usr/bin/sudo

41 / 57

set-user-ID 属性の設定

• 以下の 3 bitは st_mode のアクセス権限 9 bitのさらに上位 3 bitに格納されている
‣ set-user-ID
‣ set-group-ID
‣ sticky

• したがってそれを st_mode に正しく反映してやれば良い
• 例 (-rwxr-xr-x (0755) に加えて set-user-ID (04000) を set)
‣ システムコール chmod(path, 04755)
‣ コマンド chmod 4755 path

42 / 57

set-user-ID 属性の使用場面例

• 複数ユーザで共有したいデータベース 𝐷 (ファイル)
‣ 複数ユーザが𝐷に書き込める必要があるが直接ファイルへの書き込み権限を与え
るわけにはいかない (壊される危険)

• 例えばどのユーザにも 𝐷 に追記 (行を追加) する権限を与えたい

⇒
• 𝐷 の
‣ ユーザ属性を 𝑢
‣ アクセス権限は 𝑢 以外には与えない (st_mode = 0600)

• 𝐷 にデータを追記するコマンド (実行可能ファイル) の
‣ ユーザ属性を 𝑢
‣ set-user-ID 属性をセット

• このコマンドで意図しないデータベース操作 (e.g., シェルの起動) を行えないように
するのはコマンド作者の責任

43 / 57

それにしてもなぜ 3つも UIDがあるのでしょう?

• 多分こうだったんじゃないか劇場

1. 実際の権限を決める ⇒ 実効 UID
2. set-user-ID がセットされたプログラムを起動した際の「元の」ユーザ ⇒ 実 UID
3. 権限の昇格ができる状態とそうでない状態 ⇒ 保存 UID

44 / 57

グループについて

グループの存在意義

• グループ = ユーザの集合
• 柔軟なアクセス制御のためのツール
‣ グループを作る
‣ グループに対するアクセス権限を設定する

• クラウドのファイル共有と異なり, 原始的な Unixでは「複数だが全員ではない」人
に対するアクセス権限を出す唯一の方法

• 注: 実は Linuxではもう少し柔軟な仕組み (ACL) があるが省略

46 / 57

コマンドレベルでの操作例 (シス管目線)

1. グループ student を作り, ユーザ ohtake, mimura, degawa をメンバーにする
• ⇒ /etc/group にグループ名, グループ番号, 所属するユーザを記述
• 注: 設定の仕方は /etc/group 以外にもある (LDAP, NISなど)

2. ohtake のファイル hello.txt を student グループのメンバーに読み書き許可する
• chown :student hello.txt # グループ属性を student に
• chmod g+rw hello.txt # グループに対する rw権限を出す

3. これで student グループ所属のユーザ ohtake, mimura, degawa が hello.txt を読み
書きできるようになる

以下これを OS (システムコール) レベルの動作として理解する

47 / 57

プロセスの実効 GIDと補助グループ ≈ 実効 UIDのグループ版

• openの成否 (一部再掲)
0. …
1. …
2. 𝑃の実効 GID または 𝑃の補助グループのどれか = 𝐹のグループ

⇒ (𝐹.st_mode & S_IRGRP) ≠ 0 なら OK
3. …

• ⇒ あとは実効 GID, 補助グループがいかにして決まるかを理解すれば良い
• 実効 GIDの決まり方は実効 UIDのそれとそっくり

48 / 57

プロセスに付随する 3つの GID

• UID同様, プロセスには 3つの GIDがついている
1. 実 GID (Real Group ID, RGIDまたは単に GID)
2. 実効 GID (Effective GROUP ID, EGID)
3. 保存 GID (Saved Group ID, SGID)

• UID同様, 親プロセスの GIDを全て継承 + 変更するシステムコールがある

49 / 57

プロセスの {実・実効・保存} GIDを{取得・変更}するシステムコール

• UIDと全く同じ
• 取得
‣ gid_t 𝑟 = getgid(); — 𝑟に実 GIDを返す
‣ gid_t 𝑒 = getegid(); — 𝑒に実効 GIDを返す
‣ int err = getresgid(&𝑟, &𝑒, &𝑠); — {実,実効,保存}GIDをそれぞれ𝑟, 𝑒, 𝑠に返す

• 変更
‣ int err = setgid(r); ≈ 実 GIDを𝑟にする
‣ int err = setegid(e); ≈ 実効 GIDを𝑒にする
‣ int err = setresgid(r, e, s); ≈ {実,実効,保存}GIDをそれぞれ𝑟, 𝑒, 𝑠にする

50 / 57

set?gid それぞれの正確な効果と成否

(これも UIDとほぼ同じ)
• 呼び出したプロセスの{実・実効・保存} GIDを (𝑅,𝐸, 𝑆)
• プロセスの実効 UIDを𝐹と書く (𝐸が使えないので苦肉の記号)

名前 成功条件 効果
setresgid(𝑟, 𝑒, 𝑠) 𝐹 = 0 または {𝑟, 𝑒, 𝑠} ∈ {𝑅,𝐸, 𝑆} (𝑅,𝐸, 𝑆) → (𝑟, 𝑒, 𝑠)
setegid(𝑒) 𝐹 = 0 または 𝑒 ∈ {𝑅,𝐸, 𝑆} (𝑅,𝐸, 𝑆) → (𝑅, 𝑒, 𝑆)

𝐹 = 0 (𝑅,𝐸, 𝑆) → (𝑒, 𝑒, 𝑒)
setgid(𝑒)

𝑟 ∈ {𝑅,𝐸, 𝑆} (𝑅,𝐸, 𝑆) → (𝑅, 𝑒, 𝑆)

51 / 57

実行可能ファイルの set-group-ID 属性

• これも set-user-ID属性とほぼ同じ
• (再掲) st_mode に格納されている, アクセス許可 9 bit以外の情報
‣ set-user-ID (setuid bit, suid bit)
‣ set-group-ID (setgid bit, sgid bit)
‣ sticky

• set-group-ID bitの効果: プロセス𝑃が, set-group-ID 属性が 1の実行可能ファイル𝐹を
(exec系システムコールで) 実行すると, 𝑃の{実効, 保存}GIDを𝐹のグループ(𝑔とす
る)にする
‣ (𝑅,𝐸, 𝑆) → (𝑅, 𝑔, 𝑔)

52 / 57

補助グループの必要性

• 実効 GIDはグループに対するアクセス権限を享受するのに使われる
1. …
2. …
3. 𝑃の実効 GID または 𝑃の補助グループ のどれか = 𝐹のグループ

⇒ (𝐹.st_mode & S_IRGRP) ≠ 0 なら OK
4. …

• 実効 GID ≈ それを実行しているユーザが所属しているグループの一つ
• だが実効 GIDひとつだけでは一人のユーザが複数のグループに所属しているという
状態を表現できない ⇒ 補助グループ

• 補助グループには任意個のグループを指定できる

53 / 57

補助グループを{取得・変更}するシステムコール

• 取得

gid_t groups[𝑛];
int err = getgroups(𝑛, groups);

• 変更

gid_t groups[𝑛] = { ... };
int err = setgroups(𝑛, groups);

• 変更ができるのは root (𝐸 = 0) だけ
• 補助グループは, sshサーバや loginサーバなどがユーザ認証後に /etc/group などを
参照して, そのユーザが所属する全グループに設定され, 以降は変わらない

54 / 57

補助グループがあるなら実効 GIDは不要では?

• アクセス権限の設定のためには実際, 実効 GID不要であろう
• 実効 GIDは,
‣ ファイル作成時のファイルのグループ属性を決める
‣ set?gidや set-gid-ID bitつきのファイルを使って変更が可能

という違い (逆に言うとそれだけ)

55 / 57

伝統的 Unixのアクセス権限設定の不自由さ

•「全員ではない複数のユーザ」にアクセス権限を出す唯一の手段がグループ
• その OS (システムコール)レベルの仕組みはプロセスに実効 GIDと補助グループと
いう属性を持たせることだった

• だが補助グループは root (𝐸 = 0) プロセスだけに設定可能
• /etc/group ファイルも一般ユーザに編集できるわけではない
• ⇒ 事実上, グループの設定も root権限がないとできない
• ⇒ 結局, (偶然既存のグループと一致していない限り) 「全員ではない複数のユーザ」
でアクセスできるファイルは, root権限がなければ作れない

• クラウドのファイル共有で複数のユーザを指定して共有ができるのと比べて不自由

56 / 57

この続きの高度な話題

• アクセス制御リスト (Access Control List; ACL)
‣ 前述した問題を解決し, 自由に複数のユーザに権限を出せる仕組み
‣ “posix acl”, “getfacl”, “setfacl” などで調べてみてください

• Capability (権限分割)
‣ 多くのシステムコールの成否が実効 ID = 0 (root) か否かで左右される

– chown, seteuid, …
‣ ⇒ ひとつでも「特権」が必要なプロセスは実効 ID = 0となり「全権委任状態」に
なるしかない (危険)

‣ システムコールごとに必要な権限を capability という小さい権限に分割
‣ ユーザやプロセスに一部の capability だけを持たせることが可能
‣ “Linux capability”, “setcap” などで調べてみてください

57 / 57

	序章
	(サイバー) セキュリティの基本3要件
	侵害される要因は様々…
	セキュリティとOS
	本講義の範囲
	(復習) OSがアプリケーションを保護する基本枠組み

	ファイルに対するアクセス制御
	ファイルに対するアクセス制御の基本
	Unixにおける「ユーザ」の実体
	Unixにおける「グループ」の実体
	特権ユーザ, スーパーユーザ, ルート

	アクセス許可関連の属性 基本編
	ファイルにつくアクセス許可関連の属性
	mode — 「誰」に対する「どのような」アクセスの許可 — の実体
	アクセス許可関連属性を見る — (お馴染みの) ls
	アクセス許可関連属性を見るシステムコール — stat
	st_mode中の9つのアクセス許可 bit
	stat 中のその他の属性
	stat コマンド
	open (読み出し) の成否
	open (書き込み) の成否
	exec系システムコールの成否
	ディレクトリに対する R, W, X の意味
	アクセス許可を変更するシステムコール — chmod
	chmod コマンド
	chmod の成否
	ファイルの{ユーザ, グループ}属性を変更するシステムコール — chown
	chownの成否
	ファイルに対して, できることの平易な言語でのまとめ

	プロセスの実効UID
	プロセスの実効UID
	プロセスに付随する3つのUID
	プロセスの {実・実効・保存} UIDを{取得・変更}するシステムコール
	set?uid それぞれの正確な効果と成否
	ポイント1
	ポイント2
	ポイント3
	実行可能ファイルの set-user-ID 属性
	set-user-ID 属性のポイント
	set-user-ID 属性の設定
	set-user-ID 属性の使用場面例
	それにしてもなぜ3つもUIDがあるのでしょう?

	グループについて
	グループの存在意義
	コマンドレベルでの操作例 (シス管目線)
	プロセスの実効GIDと補助グループ ≈ 実効UIDのグループ版
	プロセスに付随する3つのGID
	プロセスの {実・実効・保存} GIDを{取得・変更}するシステムコール
	set?gid それぞれの正確な効果と成否
	実行可能ファイルの set-group-ID 属性
	補助グループの必要性
	補助グループを{取得・変更}するシステムコール
	補助グループがあるなら実効GIDは不要では?
	伝統的Unixのアクセス権限設定の不自由さ
	この続きの高度な話題

