
2024 年度オペレーティングシステム期末試験

2025 年 1 月 29 日 (水)
• 問題は 3 問.

• この冊子は，表紙が 1 ページ (このページ), 問題が 2-11 ページからなる.

• 解答用紙の Submit は何度行っても良く, 最後に Submit したものだけが受け付けられるの
で, 試験終了や, その間際になるのを待たずに 各自のタイミングで行うこと.

• 試験終了後に Submit するのは不正行為となる (Submit はできてしまうが, Submit した時刻
が記録されており, 後からそれが発覚することになるので, 決して行わないよう注意せよ).

1 / 11



問題 1

以下の問いに答えよ.

(1) オペレーティングシステムがアプリケーションから保護される仕組みについて説明した
文として, 以下のうちから最も的確なものを選べ.

(a) 各プロセスごとに一つの論理アドレス空間を割り当て, アドレス変換機構(MMU)を用
いて異なるプロセスが同一の物理ページを用いないようにする.

(b) ファイルへのアクセスやメモリの割当などのためのシステムコール中で適切にアクセ
ス権限を検査することで, 合法でないアクセスを禁止する.

(c) プロセスはユーザーモードで動作させ, オペレーティングシステムはスーパーバイザ
モードで動作させる.

(d) 仮想化技術を用いて複数の環境を隔離することで, プロセスがオペレーティングシス
テムのデータを読んだり書いたりできないようにする.

(2) グラフィカルユーザインタフェース (GUI) 環境で, あるアプリケーションの 1スレッドが
システムコールを一切呼び出さない無限ループに陥ってもマウスカーソルは動くしその
アプリケーションを終了させるための操作が可能である仕組みについて説明した文とし
て, 以下のうちから最も的確なものを選べ.

(a) マウスは CPUで動いているのではないので CPUがそのアプリケーションに占有され
ても動き続ける.

(b) CPUには複数のコアが存在しており, 1つのスレッドはその中の 1つのコアを占有す
るだけであり, マウスは別のコアで動き続ける.

(c) CPUに対するタイマー割り込みが発生して OSに制御が渡るようになっている.

(3) グラフィカルユーザインタフェース (GUI) 環境では, 数百を超えるプロセスが存在してい
ることも通常である. そのような状態の PC (ノート PCで OSは Linuxとする) で, 長時間
の計算を行うプログラムを実行したところ, ほぼ CPUの限界性能に近い性能で動いた. 他
に数百を超えるプロセスが存在しているにも関わらずそうなる理由として最も的確なも
のを選べ.

(a) Linuxのスケジューラが vruntimeという変数をスレッドごとに割当て, CPU時間を公
平に割り当てている.

(b) ほとんどのプロセス (の中のほとんどのスレッド) が中断している.
(c) 長時間の計算を行っているスレッドには CPU時間を多く割り当てるような優先度付

けが行われる.
(d) ノート PCであっても複数のコアを持つマルチコア CPUを搭載している.

(4) 以下の (O1) - (O5) の 5つのプログラムはいずれも起動すると, 子スレッドを 1つ作り, 親,
子スレッドそれぞれが関数 foo を呼び出し, 子スレッドが終了したあとで, 親スレッドが
あるメモリ領域 (変数や, 動的に割り当てられた領域) の値を, x = ... または *p = ... の
ように表示するものである. (P1) - (P4) の 4つのプログラムは同様のことをプロセスを用
いて行う. これらのプログラムの出力 (上記の … の部分) について正しく記述しているも
のが以下のどれであるかを, すべてのプログラムについて(a)-(e)の記号で答えよ.
(a) 常に 0.
(b) 常に 1.

2 / 11



(c) 常に 2.
(d) 常に一定だが, 0, 1, 2のどれでもない.
(e) 不定 (実行のタイミングによって結果が異なる).

注: 以下のプログラムは文法的には正しいが, #include 句が欠けているなどでそのままで
はコンパイルできないこともある.

(O1)

int x = 0;
void foo() {
  x++;
}
int main() {
#pragma omp parallel num_threads(2)
  foo();
  printf("x = %d\n", x);
  return 0;
}

(O2)

int x = 0;
void foo(int y) {
  y++;
}
int main() {
#pragma omp parallel num_threads(2)
  foo(x);
  printf("x = %d\n", x);
  return 0;
}

(O3)

void foo(int * p) {
  *p += 1;
}
int main() {
  int * p = (int *)calloc(1, sizeof(int));
  if (!p) err(1, "calloc");
#pragma omp parallel num_threads(2)
  foo(p);
  printf("*p = %d\n", *p);
  return 0;
}

(O4)

void foo(int * p) {
  *p += 1;
}
int main() {
  int x = 0;
#pragma omp parallel num_threads(2)
  foo(&x);
  printf("x = %d\n", x);
  return 0;
}

(O5)

3 / 11



void foo(int y) {
  int * p = &y;
  *p += 1;
}
int main() {
  int x = 0;
#pragma omp parallel num_threads(2)
  foo(x);
  printf("x = %d\n", x);
  return 0;
}

(P1)

int x = 0;
void foo() {
  x++;
}
int main() {
  pid_t pid = fork();
  if (pid == -1) err(1, "fork");
  foo();
  if (pid) {
    pid_t qid = waitpid(pid, 0, 0);
    if (qid == -1) err(1, "waitpid");
    printf("x = %d\n", x);
  }
  return 0;
}

(P2)

void foo(int * p) {
  *p += 1;
}
int main() {
  int * p = (int *)calloc(1, sizeof(int));
  if (!p) err(1, "calloc");
  pid_t pid = fork();
  if (pid == -1) err(1, "fork");
  foo(p);
  if (pid) {
    pid_t qid = waitpid(pid, 0, 0);
    if (qid == -1) err(1, "waitpid");
    printf("*p = %d\n", *p);
  }
  return 0;
}

(P3)

void foo(int * p) {
  *p += 1;
}
int main() {
  int * p = (int *)mmap(0, sizeof(int), PROT_READ|PROT_WRITE, MAP_SHARED|MAP_ANONYMOUS, -1, 0);
  if (p == MAP_FAILED) err(1, "mmap");
  pid_t pid = fork();
  if (pid == -1) err(1, "fork");
  foo(p);
  if (pid) {
    pid_t qid = waitpid(pid, 0, 0);
    if (qid == -1) err(1, "waitpid");
    printf("*p = %d\n", *p);
  }
  return 0;
}

(P4)

4 / 11



void foo(int * p) {
  *p += 1;
}
int main() {
  int * p = (int *)mmap(0, sizeof(int), PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
  if (p == MAP_FAILED) err(1, "mmap");
  pid_t pid = fork();
  if (pid == -1) err(1, "fork");
  foo(p);
  if (pid) {
    pid_t qid = waitpid(pid, 0, 0);
    if (qid == -1) err(1, "waitpid");
    printf("*p = %d\n", *p);
  }
  return 0;
}

5 / 11



問題 2

グレースケール画像を格納するファイル形式とそれを読み出すプログラムについて考える.
グレースケール画像は, 単純には 2次元の整数配列で表すことができる. 配列の各要素がある
画素の画素値 (グレースケールなのでひとつの整数値) になっている.

これを実現する単純なファイル形式として, Portable Graymap (PGM) という形式がある. そこ
では, 幅𝑊画素, 高さ𝐻画素, 画素値として取りうる値が 0以上𝑀以下であるような画像を,

P2

𝑊 𝐻
𝑀
𝑎0,0 𝑎0,1  ... 𝑎0,𝑊−1
𝑎1,0 𝑎1,1  ... 𝑎1,𝑊−1
⋮ ⋮ ⋱ ⋮

𝑎𝐻−1,0 𝑎𝐻−1,1  ... 𝑎𝐻−1,𝑊−1

のように表す. ただし, 𝑎𝑖,𝑗 は 𝑖 行 𝑗 列の画素値を表す. ここで行は一番上の行から順に 0行, 1
行, …, と呼び, 列は一番左の列から順に 0列, 1列, … と呼ぶ.

またファイル中で, 各数字は ASCII文字列 (テキストエディタで普通に表示できる文字列) で
表されている. PGM形式には 2種類あり, 画素値をバイナリ形式で表す形式もあるが, 本問で
PGM形式と言えば ASCII文字列を使った形式のことであるとする. さらに本問では以下を仮
定して良い.

• 𝑀 = 255.
• 各画素値は必要ならば空白を入れてちょうど 3バイト (右詰め) の文字列で表されている.
• ある画素を表す 3バイトの文字列と, 次の画素を表す 3バイトの文字列との間に 1バイト
の隙間が入っている.

• その隙間は, 同じ行内の要素間については空白 (' ') であり, ある行の最後の要素と次の行
の最初の要素間については改行文字('\n')である.

例えば,

という画像を表す, 上記の仮定を満たした PGM形式のファイル — i.pgm とする — の中身は
以下のようである.

6 / 11



P2
22 39
255
  3   3   3   3   3   3   3   3   3   3   3   3  39 113 143 167 147 118  38   3   3   3
  3   3   3   3   3   3   3   3   3   3   4 140 249 252 252 252 252 252 252 156   5   3
  3   3   3   3   3   3   3   3   3   3  96 252 252 252 252 252 252 252 252 252  65   3
  3   3   3   3   3   3   3   3   3   3 166 252 252 252 252 252 252 252 252 252  78   3
  3   3   3   3   3   3   3   3   3   3 143 252 252 252 252 252 252 252 252 238  20   3
  3   3   3   3   3   3   3   3   3   3  26 201 252 252 252 252 252 252 214  62   3   3
  3   3   3   3   3   3   3   3   3   3   3   3  45 103 126 129 105  50   3   3   3   3
  3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3
  3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3
  3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3
  3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3
  3  25 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120  41   3   3   3   3
  3 120 252 252 252 252 252 252 252 252 252 252 252 252 252 252 246  23   3   3   3   3
  3 117 154 169 184 227 252 252 252 252 252 252 252 252 252 252 172   3   3   3   3   3
  3   3   3   3   3   3  47 221 252 252 252 252 252 252 252 252  80   3   3   3   3   3
  3   3   3   3   3   3   3 130 252 252 252 252 252 252 252 231   8   3   3   3   3   3
  3   3   3   3   3   3   3 160 252 252 252 252 252 252 252 144   3   3   3   3   3   3
  3   3   3   3   3   3   6 227 252 252 252 252 252 252 252  52   3   3   3   3   3   3
  3   3   3   3   3   3  74 252 252 252 252 252 252 252 211   3   3   3   3   3   3   3
  3   3   3   3   3   3 166 252 252 252 252 252 252 252 119   3   3   3   3   3   3   3
  3   3   3   3   3  17 242 252 252 252 252 252 252 250  31   3   3   3   3   3   3   3
  3   3   3   3   3 101 252 252 252 252 252 252 252 184   3   3   3   3   3   3   3   3
  3   3   3   3   3 193 252 252 252 252 252 252 252  92   3   3   3   3   3   3   3   3
  3   3   3   3  35 251 252 252 252 252 252 252 240  15   3   3   3   3   3   3   3   3
  3   3   3   3 128 252 252 252 252 252 252 252 157   3   3   3   3   3   3   3   3   3
  3   3   3   4 217 252 252 252 252 252 252 252  65   3   3   3   3   3   3   3   3   3
  3   3   3  56 252 252 252 252 252 252 252 221   5   3   3   3   3   3   3   3   3   3
  3   3   3 136 252 252 252 252 252 252 252 131   3   3   3   3   3   3   3   3   3   3
  3   3   3 215 252 252 252 252 252 252 252  49   3   3   3   3   3   3   3   3   3   3
  3   3  37 252 252 252 252 252 252 252 221   3   3   3   3   3   3   3   3   3   3   3
  3   3 104 252 252 252 252 252 252 252 150   3   3   3   3   3   3   3   3   3   3   3
  3   3 166 252 252 252 252 252 252 252  95   3   3   3   3   3   3   3   3   3   3   3
  3   3 205 252 252 252 252 252 252 252  68   3   3   3   3   3   3   3   3   3   3   3
  3   3 238 252 252 252 252 252 252 252  77   3   3   3   3   3   3   3   3   3   3   3
  3   3 237 252 252 252 252 252 252 252 169   4   3   3   3   3   5  55 129 131   5   3
  3   3 164 252 252 252 252 252 252 252 252 202 135 124 140 178 230 252 252 252 129   3
  3   3  29 223 252 252 252 252 252 252 252 252 252 252 252 252 252 246 177  73   4   3
  3   3   3  30 172 251 252 252 252 252 252 252 252 252 238 181 101  21   3   3   3   3
  3   3   3   3   3  33 102 143 162 164 145 128 102  46   5   3   3   3   3   3   3   3

以下の問いに答えよ. なお参考までに以下の 2つの関数を含んだファイル pgm.cと上記の
i.pgmを配布している. pgm.cはあくまでファイル形式の説明の補足として示しているもので,
解答にこれをそのまま使えという意味ではない. 使ってもよいが仮に間違いがあったらそれ
を適宜修正して使うのも解答者の責任である.

• char * read_pgm(char * a_pgm, long * Wp, long * Hp, long * Mp)

引数 a_pgm で与えられた名前の PGMファイルを読み込む. ファイルが読み込めなかったり
画素数が足りないなどエラーが生じた場合はプログラムを終了させる. 成功した場合, 幅
(𝑊とする), 高さ (𝐻  とする), 画素値の最大値 (𝑀  とする. 本問では常に 255) をそれぞれ
*Wp, *Hp, *Mp に格納する. 返り値として画素値の配列 (の先頭へのポインタ) を返す. 具体的
には, 返り値を𝑎として, 𝑖 行 𝑗 列の画素値が 𝑎[𝑖𝑊 + 𝑗] に格納された配列を返す.

• void write_pgm(long W, long H, long M, char * a, char * a_pgm)

幅が W画素, 高さが H画素, 画素値の最大値が M, 画素値が配列 aで与えられる PGMファイ
ルを引数 a_pgm で指定された名前で作る. 𝑖 行 𝑗 列の画素値が a[𝑖 W + 𝑗] で与えられる.
ファイルが作れないなどエラーが生じた場合はプログラムを終了させる.

(1) 幅𝑊画素, 高さ𝐻画素の画像を PGM形式で表すのに何バイト必要か? ただし PGM形式の
画素値の部分だけを数えればよく, ヘッダ部分:

P2

𝑊 𝐻
𝑀

は含めなくて良い.

(2) 以下のように PGM形式のファイル名 𝑓  と, 整数 𝑖, 𝑗 をコマンドラインで与えられると,

7 / 11



./pixel_val 𝑓  𝑖 𝑗

𝑓  の 𝑖 行 𝑗 列の画素値を表示するプログラム pixel_val を C言語で書け. 例えば上記の
i.pgm に対して期待される出力は以下の通り ($ は, シェルのコマンドプロンプトでありコ
マンドの一部ではない).

$ ./pixel_val i.pgm 0 0
3
$ ./pixel_val i.pgm 11 2
120

ただしプログラムは効率的なものでなくてはならず, それは実行時間がファイルサイズに
ほとんどよらないことを意味する. 解答欄にあるコマンドでコンパイルし, テストまで行
うこと. コンパイルのためのコマンドは必要ならば変更しても良い.

(3) PGM形式のファイル名𝑓と, 以下のように行と列の組が 1行にひとつずつ並んだファイル
(添字ファイルと呼ぶことにする) 𝐼

𝑖0 𝑗0
𝑖1 𝑗1
⋮ ⋮
𝑖𝑁−1 𝑗𝑁−1

が与えられると, 指定されたすべての画素値の合計値, すなわち 𝑎𝑖0,𝑗0 + 𝑎𝑖1,𝑗1 +…+
𝑎𝑖𝑁−1,𝑗𝑁−1  を計算して表示するコマンドを, pixel_val を指定された画素に対して順に呼び
出すだけのシェルスクリプト pixel_vals.sh として書け. 例えば上記の i.pgm と, 以下の
内容を持つ添字ファイル idx.txt

0 0
11 2

に対して,

$ ./pixel_vals.sh i.pgm idx.txt

のように起動ししたときに期待される出力は, 123 である (3 + 120 = 123 だから).

シェルスクリプトをファイルに保存し, 解答用紙にあるコマンドでテストまで行うこと.
awk コマンドを使うと良いかもしれない (使わなくても構わない). ヒントとして以下は,
idx.txt を第一引数として与えるとその内容を順に表示するだけのシェルスクリプトで
ある.

#!/bin/bash

cat $1 | while read i j ; do
    echo "i=$i j=$j"
done

(4) 𝑊 = 𝐻 = 214(= 16384) である大きな PGMファイルがある. このファイルがキャッシュ
上にない状態で, 行と列が 𝑁 = 218 個入った添字ファイルを上記のシェルコマンドに与え
る. ただし各行, 列の番号は 0以上 16384未満の数がランダム (一様) に選ばれているとす
る. このプログラムの進行を, 横軸を読み出した画素数 (𝑛), 縦軸を 𝑛 画素読み出すまでに

8 / 11



かかった時間 (𝑡) としてグラフに書くとどのようになるか? 以下から適切なものを 1つ選
び, そのようになると考える理由も述べよ. なお, 複数のグラフの縦軸は同じスケールで描
かれているとは限らない.

(a) (b) (c)

(d) (e) (f)

(g)

(5) 上記と同等の動作をするプログラムをさらに高速化したい. 考えられる方針を 1つ述べ,
なぜそれで高速化するのかを述べよ.

(6) 上記で述べた方法のうちの一つを実際にプログラムにせよ. プログラムは一つの C言語
のプログラムとして, pixel_vals.c というファイルに書け. 解答用紙にあるコマンドライ
ンでコンパイルとテストを行え. コンパイルのためのコマンドは必要ならば変更しても良
い.

9 / 11



問題 3

次のような, 同期のためのデータ構造 gate_t と関連する関数を考える. gate_t は mutex (排他
制御) と似ているが, 𝑙 を初期化時に定めた定数として, クリティカルセクションに同時に 𝑙 ス
レッドまで同時に入ることを許す. 例えて言うならば, 𝑙 台まで自動車が止められる駐車場の
入口の門番を行うデータ構造である.

具体的には以下の 3つの関数を持つ.

• void gate_init(gate_t * 𝑔, uint32_t 𝑙);
• void gate_enter(gate_t * 𝑔);
• void gate_leave(gate_t * 𝑔);
• 注: uint32_t は 32 bitの符号なし整数の型である. 符号なしであることに深い意味はないが,
後に futex 関数に渡す都合上そのようにしている.

gate_init(𝑔, 𝑙) を一度だけ呼び出し, あとはその𝑔に対して各スレッドが, gate_enter(𝑔) と
gate_leave(𝑔) を交互に呼び出す.

このとき gate_t は, gate_enter(𝑔) の呼び出しを終えて gate_leave(𝑔) をまだ呼び出していな
いスレッドの数が 𝑙 以下であることを保証する.

より具体的には以下のようなコードを動かした際, ???の部分を実行中のスレッドが常に 𝑙 以
下であることを保証する.

gate_t g[1];
gate_init(g, l);
#pragma omp parallel
{
  while (...) {
      ...
    gate_enter(g);
      ???
    gate_leave(g);
      ...
  }
}

以下の問いに答えよ.

(1) gate_t と上記の 3つの関数を, mutex や, その他必要な Pthread の同期のためのプリミティ
ブを用いて実現せよ.

(2) それらを compare_and_swap 以外の同期プリミティブを一切用いずに実現せよ. ただしビ
ジーウェイトをしてもよい. なお解答欄に compare_and_swap 命令の定義が書いてあるの
で使って良い (授業で述べたときと用いている関数名が変わっているが, GCCの仕様変更
によるものである).

(3) それらを, compare_and_swap と futex を用いて, mutex を用いずに実現せよ. ビジーウェイ
トしてはならない. ここで「ビジーウェイトしない」とは直感的には, あるスレッド𝐴が,
別のスレッド 𝐵 が進行するのを待つだけのために長時間 CPUを使わない (待つならばブ
ロックする) ということだがもう少し厳密な定義を述べると, 「任意のタイミングで任意

10 / 11



個のスレッドを停止させたとしても, その状態で残りのスレッドは有限時間で進行する
か, さもなければブロックする」ということである.

さて, 仕様を少し変更して, gate_enter が uint32_t の値を返し, gate_leave は uint32_t の
値を受け取ることにする.
• void gate_init(gate_t * 𝑔, uint32_t 𝑙);
• uint32_t gate_enter(gate_t * 𝑔);
• void gate_leave(gate_t * 𝑔, uint32_t 𝑥);

gate_enter の返り値は 0 以上 𝑙 未満の整数で, 駐車場の比喩を続けるならば, どの駐車ス
ロット空いているかを返す. もう少し厳密に言うと以下の通り:
• あるスレッドが gate_enter(𝑔) を呼び出して返り値 𝑥 が返されたあと, まだそのスレッ
ドが gate_leave(𝑔) を呼んでいない状態を, 「そのスレッドが𝑔 から 𝑥 を受け取ってい
る」ということにする.

• 𝑔 から 𝑥 を受け取っているスレッドが gate_leave(𝑔, ..) を呼び出す際は, その 𝑥 を第
2引数として渡さなくてはならないものとする.

• その仮定のもとで, 複数のスレッドが同じ gate_tから同じ値を受け取っていることは
ない.

(4) このように仕様を変更した gate_t と 3つの関数を, mutex, その他必要な Pthreadのプリミ
ティブを用いて実現せよ.

(5) それらを, compare_and_swap と futex を用いて, mutex を用いずに実現せよ. ビジーウェイ
トしてはならない.

問題は以上である.

11 / 11


	
	
	

