
2023年度オペレーティングシステム期末試験

2024年 1月 24日 (水)

� 問題は 3問

� この冊子は，表紙が 1ページ (このページ), 問題が 2-7ページからなる

� 解答用紙の Submitは何度行っても良く, 最後に Submitしたものだけが受け付けられるので, 試験
終了や, その間際になるのを待たずに各自のタイミングで行うこと

� 試験終了後に Submitするのは不正行為となる (Submitはできてしまうが, Submitした時刻が記録
されており, 後からそれが発覚することになるので, 決して行わないよう注意せよ)

1

1

以下の問いに答えよ. ただし, 問い自体に誤った言明が含まれている場合もあり, その場合は以下の例に
習ってそれを正した上で問いに答えよ.

例 1: 豊臣秀吉が長篠の戦いにどのようにして勝利したか, その方法を 30字程度で述べよ.

(解答例)

問い自体が誤り. 豊臣秀吉は長篠の戦いを戦っておらず, 長篠の戦いに勝利したのは織田信長である.

方法: 鉄砲の音によって武田軍の騎馬隊を大混乱に陥れた. (24字)

例 2: ドラえもんが青い理由を 50字程度で述べよ.

(解答例)

ネズミに耳をかじられ手術を受け, 手術後耳がなくなった自分の姿を見て, 文字通り青ざめてしまっ
たのです. . . (50字)

括弧内の字数は参考として書いたもので解答に含める必要はない.

(1) マルチプログラム (複数のプログラムが動く)環境では, 一般にmutexよりもスピンロックのほうが
望ましいとされるのはなぜか, その理由を簡潔に 50-100字程度で述べよ.

(2) アドレス空間はプロセス間で分離しており, 通常はメモリを共有することはできないが, 共有する方
法もある. どのようなプログラムを書けばそれができるか, 具体的なシステムコールをあげつつ, 方
法を 50-100字程度で説明せよ (詳細なコードを示す必要はない).

(3) P 個の仮想コアを持つ計算機で, P 2個以上のスレッドがシステムコールを呼び出すことなく無限に
計算を続けると, 他のスレッドに実行の機会が回ってくることがなくなるのはなぜか? 50-100字程
度で述べよ.

(4) キャッシュに収まりきらない大きなファイルを 2分探索で検索するプログラムがある. このようなプ
ログラムを多数同時に走らせてもスループット (単位時間あたりに処理できる検索の数)が向上しな
い理由はなにか? 50-100字程度で述べよ.

(5) プログラムの起動を高速にするのに, ページテーブルが果たしている役割を 2つ以上述べよ. 100-200

字程度でまとめよ.

2

2

非負の整数を保持し, 以下のような操作を許すデータ構造「カウンタ」(counter t) を考える. 以下で
vは非負の整数である.

データ型定義: 保持する値を構造体の中に持つ.�
1 typedef struct {

2 long v;

3 } counter_t;

初期化: カウンタ cが保持する値を vに初期化する.�
1 void counter_init(counter_t * c, long v) {

2 c->v = v;

3 }

(下限付きの)減算: カウンタ cが保持する値が x以上であればそれを x減らして 1を返し, x未満であれ
ば減らさずに 0を返す.�

1 int counter_dec(counter_t * c, long x) {

2 if (c->v < x) {

3 return 0;

4 } else {

5 c->v -= x;

6 return 1;

7 }

8 }

さて上記の実装は, 複数のスレッドが並行して counter dec を呼んだときは正しく動作しない. つまり,

スレッドセーフではない.

(1) mutexを用いて, counter decがスレッドセーフになるように, counter t, counter init, counter dec

に必要な変更を施せ. ただしcounter initはcounter decに先立って一度だけ呼ばれ, counter dec

と並行して呼ばれることはないものとしてよい.

(2) mutex やスピンロックを用いず, compare-and-swap 命令を用いて同様のことを行え. C 言語で
compare-and-swap命令は, sync bool compare and swap(long *p, long old, long new) と
いう関数で利用できる.

以下では, たくさんの種類の商品の在庫数を管理することを考える. M 種類の商品があり, 商品の種
類を 0, 1, · · · ,M − 1の整数で表すことにする. 在庫数を, M 要素の counter tの配列 Cで管理する.

商品 pの在庫数を管理するカウンタが C[p]である.

買い物客がやってきて買い物をする. 簡単のため, 一回の買い物ではちょうど 2種類の商品を求める
(買おうとする)とする. 各商品を求める個数についての制限はない.

一回の買い物では, 求める 2種類の商品の在庫数が, ともに求める以上にあればそれらを買い, 対応
する商品の在庫数を買った分だけ減少させる. どちらかでも在庫数が足りなければ, どちらも一個も

3

買わずにその買い物すべてを諦める. 片方の商品だけ買ったり, 在庫にある数だけ買うようなことは
しない.

例えばM = 5だったとして, 商品の在庫が商品 0から順に

46, 35, 24, 57, 13

だったとして, ある買い物が「商品 1を 30個, 商品 3を 50個」を求めているとすると, (他の買い物
がなければ)その買い物は成立し, 買い物後の在庫の状態は

46, 5, 24, 7, 13

となる. これがもし, 「商品 0を 30個, 商品 4を 50個」だったらその買い物は成立せず, 在庫は変
化しない.

一回の買い物の行動を C言語で書けば以下の関数 buy2の様になる.�
1 int buy2(counter_t * C, long M, long p, long q, long x, long y) {

2 if (C[p].v < x || C[q].v < y) {

3 return 0;

4 } else {

5 C[p].v -= x;

6 C[q].v -= y;

7 return 1;

8 }

9 }

関数呼び出し buy2(C, M, p, q, x, y)は, M 種類の商品の中から商品 pを x個, 商品 qを y個
求め, 買い物が成立したらCにそれを反映して 1を返す. 成立しなければCを変更せずに 0を返す.

0 ≤ p < M , 0 ≤ q < M , p ̸= q を仮定して良い.

buy2をスレッドセーフにする, つまり, buy2を複数のスレッドが並行して呼び出しても正しく動作
するようにするために, 以下のアプローチを考える.

方法A: counter decを,商品p, qそれぞれについて呼び出して実現する. ただし以下のcounter dec

は (1)で作ったものとする.�
1 int buy2(counter_t * C, long M, long p, long q, long x, long y) {

2 if (!counter_dec(&C[p], x)) return 0;

3 if (!counter_dec(&C[q], y)) {

4 counter_dec(&C[p], -x);

5 return 0;

6 }

7 return 1;

8 }

4

方法B: 商品 p, 商品 qのmutexをこの順番でロックしてから, その状態で在庫確認し, 在庫が十分
にあれば商品 p, 商品 qの在庫数を減らす. 疑似コードで書けば以下.�

1 int buy2(counter_t * C, long M, long p, long q, long x, long y) {

2 C[p]をロック;

3 C[q]をロック;

4 if (C[p].v < x || C[q].v < y) {

5 C[p]をアンロック;

6 C[q]をアンロック;

7 return 0;

8 } else {

9 C[p].v -= x;

10 C[q].v -= y;

11 C[p]をアンロック;

12 C[q]をアンロック;

13 return 1;

14 }

15 }

方法C: 商品 0のmutexをロックしてから, その状態で在庫確認し, 在庫が十分にあれば商品 p, 商
品 qの在庫数を減らす. 疑似コードで書けば以下.�

1 int buy2(counter_t * C, long M, long p, long q, long x, long y) {

2 C[0]をロック;

3 if (C[p].v < x || C[q].v < y) {

4 C[0]をアンロック;

5 return 0;

6 } else {

7 C[p].v -= x;

8 C[q].v -= y;

9 C[0]をアンロック;

10 return 1;

11 }

12 }

さてここで buy2関数を複数のスレッドが並行して呼び出しても正しく動作する, ということをきち
んと定義しておこう. 商品 p (p = 0, 1, · · · ,M)の在庫の初期値をCpとする. 複数のスレッドが buy2

を様々なパラメータで合計 T 回呼び出したとする. それらの呼び出しを B0, B1, · · · , BT−1と呼ぶこ
とにし, 呼び出しBtが buy2のパラメータ p, q, x, yに渡した値をそれぞれ, pt, qt, xt, yt と呼び,

Btの返り値 (0または 1)を st と呼ぶことにする (sは, successの頭文字). これらの呼び出しが正し
く動作するとは, 以下の条件が満たされることを言う.

条件 1: すべての呼び出しBt (t = 0, 1, · · · , T − 1) が終了する.

条件 2: 各商品の在庫の値が, 買われた分だけ正しく減っている. つまり, すべての呼び出しが終了し
たあとの, 商品 pに対するカウンタの値 (C[p].v)を Fpとして, すべての商品 p = 0, 1, · · · ,M
に対し,

Fp ≥ 0

および,

Cp − Fp =
∑

{t∈[0,M)|st=1,pt=p}

xt +
∑

{t∈[0,M)|st=1,qt=p}

yt

5

が成り立つ.

条件 3: 買い物が無駄に失敗していない. 言い換えると, 成立しなかった買い物は, すべての呼び出
しが終了した状態でもやはり成立しない. つまり, すべての t = 0, 1, · · · ,M − 1に対し,

st = 0 → (Fpt < xt または Fqt < yt)

が成り立っている.

この条件が必要な理由は一見わかりにくいかもしれないが, この条件を課さなければ, すべての
買い物を無条件で失敗させるような解 (何もせずに 0を返す buy2)も,「正しい」ということに
なってしまうことに注意.

(3) 方法A が正しいか答えよ. 条件 1～3を満たしているか, 各条件について答えよ. ある条件を満たし
ていないと答える場合, 条件が満たされない実行系列を具体的に示すこと. 満たしていると答える場
合は, そのことの証明は不要.

(4) 方法 B について同様の問いに答えよ.

(5) 方法 C について同様の問いに答えよ.

(6) 3条件を満たす, (方法A, B, Cとは異なる)方法を答えよ. 50-100字程度の概略と, 実際に動くコー
ドを書け. 書いたコードは, Jupyter環境上で解答用紙 (ipynbファイル)を fetchしたときにともに
配布されているプログラムを使ってテストするとよい. テストの仕方は解答用紙にある. その際に必
要な, 復号のためのパスワードは

Eew9Ee

である. テストは解答に対する自信を深めるための方法であり, 必須ではない.

6

3

以下の問いに答えよ.

(1) 未来のアクセス系列が与えられている (オフラインアルゴリズム) という仮定のもとで, 最適なペー
ジ置換アルゴリズムとはどのようなものか, 70字以内で簡潔に答えよ

(2) P ページ分の物理メモリを持つ計算機で L個の論理ページ (0, 1, · · · , L− 1の番号をつける) をアク
セスするプログラムを考える. ただし L > P であり, 初期状態ではどの論理ページも物理メモリ上
にないものとする. プログラムのアクセスパターンと, ページ置換アルゴリズムが以下の組み合わせ
であるとき, 平均ページフォルト間隔を, 理由の説明とともにそれぞれ答えよ.

ここで, 平均ページフォルト間隔とは, プログラムを十分長い時間走らせたとき, あるページフォル
トから次のページフォルトまでの間隔の平均値である. 例えば 1000番目のアクセスでページフォル
トが起き, 次のページフォルトが 1234番目で起きたとすると両者の間隔は 234であると考える. 例
えば, ページフォルトがすべてのアクセスで起きているとき, ページフォルト間隔は 1であり, ペー
ジフォルトを起こすアクセスと起こさないアクセスが交互に起きているのであれば, ページフォルト
間隔は 2となる.

(a) プログラムは, 論理ページ 0から L− 1までを一回ずつこの順にアクセスすることを繰り返す
(つまりアクセス系列は 0, 1, · · · , L− 1, 0, 1, · · · , L− 1, · · ·). ページ置換アルゴリズムは LRU.

(b) プログラムは (a)と同じ. ページ置換アルゴリズムは (1)で述べた最適なオフラインアルゴリ
ズム.

(c) プログラムは (a)と同じ. ページ置換アルゴリズムは乱択アルゴリズムで, ページ置換が必要に
なったとき, 物理メモリ上にある P 個のページから等確率 (1/P)でページアウトするページを
選ぶ. ただし簡単のためここでは, L = P + 1とする.

(d) プログラムはすべてのページを等確率 (1/L)でランダムにアクセスすることを繰り返す. ペー
ジ置換アルゴリズムは LRU.

(3) ページ置換アルゴリズムの目標はページ置換数を減らすことだが, 実際のOSはこれ以外の実践的な
要素も考慮してページアウトするページを決めている. どのような要素を考慮しているか, 理由とと
もに 150字程度述べよ.

問題は以上である.

7

