
2022年度オペレーティングシステム期末試験

2023年 1月 31日 (火)

� 問題は 4問

� この冊子は，表紙が 1ページ (このページ), 問題が 2-12ページからなる

� 解答用紙の Submitは何度行っても良く, 最後に Submitしたものだけが受け付けられるので, 試験
終了や, その間際になるのを待たずに各自のタイミングで行うこと

� 試験終了後に Submitするのは不正行為となる (Submitはできてしまうが, Submitした時刻が記録
されており, 後からそれが発覚することになるので, 決して行わないよう注意せよ)

1

1

次の関数 search mem for stringは, アドレスの範囲 [a, a + L)の中で文字列 sを検索し, その出現
回数を返り値として返す.�

1 #define _GNU_SOURCE

2 #include <string.h>

3

4 /* [a, a + L) 中で s の出現回数を返す */

5 long search_mem_for_string(char * a, long L, char * s) {

6 char * a_end = a + L;

7 char * p = a;

8 long n_founds = 0;

9 while (1) {

10 p = memmem(p, a_end - p, s, strlen(s));

11 if (!p) break;

12 p++;

13 n_founds++;

14 }

15 return n_founds;

16 }

次の関数 search file for stringは, ファイル filenameの先頭 Lバイト中の文字列 sを検索し, そ
の出現回数を返り値として返す.�

1 #include <err.h>

2 #include <sys/types.h>

3 #include <stdio.h>

4 #include <stdlib.h>

5 long search_mem_for_string(char * a, long L, char * s);

6

7 /* filename の先頭Lバイトにある s の出現回数を数える */

8 long search_file_for_string(char * filename, long L, char * s) {

9 FILE * fp = fopen(filename, "r");

10 if (!fp) err(1, "fopen(%s)", filename);

11 char * a = malloc(L);

12 if (!a) err(1, "malloc(%ld)", L);

13 size_t rd = fread(a, 1, L, fp);

14 if (rd != (size_t)L) err(1, "fread");

15 fclose(fp);

16 long c = search_mem_for_string(a, L, s);

17 free(a);

18 return c;

19 }

次の関数 search file for stringsは,複数の文字列を検索するもので,ファイル filenameの先頭 Lバ
イト中に, 文字列の配列 S中の各文字列 S[0], S[1], ..., S[n-1] それぞれが何回現れるかを表示する.�

1 #include <err.h>

2 #include <stdio.h>

3 #include <stdlib.h>

4

5 long search_file_for_string(char * filename, long L, char * s);

6

2

7 /* filename の先頭Lバイトにある S[0], S[1], ..., S[n-1]

8 の出現回数を数え, 表示する */

9 void search_file_for_strings(char * filename, long L, char ** S, int n) {

10 for (int i = 0; i < n; i++) {

11 long c = search_file_for_string(filename, L, S[i]);

12 printf("%s : %ld\n", S[i], c);

13 }

14 }

これらを使った以下のプログラムは,

./search file filename L w0 w1 · · · wn−1

として起動すると, filenameの先頭 Lバイトに, w0 w1 · · · wn−1がそれぞれ何回現れるかを表示する.�
1 #include <err.h>

2 #include <stdio.h>

3 #include <stdlib.h>

4 #include <sys/types.h>

5 #include <sys/stat.h>

6 #include <time.h>

7 #include <unistd.h>

8

9 void search_file_for_strings(char * filename, long L, char ** S, int n);

10

11 /* ファイルのサイズを求める */

12 long get_file_size(char * filename) {

13 struct stat sb[1];

14 if (stat(filename, sb) == -1) {

15 err(1, "stat(%s)", filename);

16 }

17 return sb->st_size;

18 }

19

20 /* 時刻 (ns単位)を得る */

21 long cur_time_ns() {

22 struct timespec ts[1];

23 clock_gettime(CLOCK_REALTIME, ts);

24 return ts->tv_sec * 1000 * 1000 * 1000 + ts->tv_nsec;

25 }

26

27 int main(int argc, char ** argv) {

28 int i = 1;

29 char * filename = (i < argc ? argv[i] : "test1.txt"); i++;

30 long L = (i < argc ? atol(argv[i]) : -1); i++;

31 if (L == -1) {

32 L = get_file_size(filename);

33 }

34 int n_words = (argc - i < 0 ? 0 : argc - i);

35 long t0 = cur_time_ns();

36 search_file_for_strings(filename, L, argv + i, n_words);

37 long t1 = cur_time_ns();

38 printf("took %.6f sec to search %s for %d words\n",

39 (t1 - t0) * 1e-9, filename, n_words);

3

40 return 0;

41 }

以下の問いに答えよ.

(1) search file for stringsのみを変更して, w0, w1, · · · , wn−1 を別々のプロセスで並列に検索する
ようにせよ.

解答用紙にあるセルを変更してプログラムを記述し, その下のセルを実行してコンパイル, その結果
を実行すること (以下, プログラムを書く問題は全て同様).

(2) そのように変更したプログラムで上記を実行したときに, 全プロセス合計で消費する仮想メモリ量
(走らせてから終了するまでの間の最大値)はおよそいくらか? 理由の説明とともに, L, nなどを用い
て示せ. ただしLは十分大きな数 (例えば 107以上)とし, ファイルの読み込み以外に消費する (L = 0

のときにも消費する)メモリ量は, Lに比べて十分小さいとして無視してよい.

(3) 物理メモリ量についてはどうか? 同様に答えよ. なお, 計算機は十分な量のメモリを搭載しているも
のとし, 物理メモリはOSが (このプログラムを実行した結果)消費する量も含めよ.

(4) (1)で得た search file for stringsを用いた上で, さらに search file for stringだけを変更
して, 物理メモリの消費量を大幅に削減するにはどうしたらよいか, 概要, それで物理メモリがどの
くらいに削減されるか, その理由, を述べよ.

(5) 前問の概要に沿って search file for stringを実際に変更せよ.

(6) もともとのプログラムでは, w0, w1, · · · , wn−1の出現回数が,この順に出力されるのに対して, (1)や (5)

で作ったプログラムでは,その表示順が入れ替わることがある. (1)で得たsearch file for strings

を少し変更して, w0, w1, · · · , wn−1 を別々のプロセスが検索しつつ, w0, w1, · · · , wn−1 の出現回数が
この順に表示されるようにせよ.

4

2

英単語の長さの分布 (色々な文字数の英単語が現れる確率)を調べたい. そのために英語が書かれた大き
なテキストファイル — 例えばWikipediaの英語ダンプファイル (解凍したもの) — を用意し, このファイ
ル中に出現する英単語の長さ (文字数)の分布を調べることでそれを得る. もちろんそれが実際の世の中で
使われている英単語長の分布と一致する保証はないが, 今はそれで満足することにする.

ここで,「ファイル中に出現する英単語」とは, そのファイルの部分文字列 (wとする)であって, 以下を
満たすもののこととする. 以下でwはファイル中の a文字目から始まり, (b− 1)文字目で終わっていると
する. ファイルに含まれる全文字列を Sで表すことにし, ファイルの大きさを Lバイトとする.

� wはアルファベット (大文字, 小文字)および数字のみからなる. つまり,

∀i ∈ [a, b) isalnum(S[i]) (∗)

ただし, S[i]は文字列 Sの i文字目 (最初の文字は 0文字目)を意味し, isalnum(c)は, 文字 cがアル
ファベットまたは数字のときに真となる述語とする.

� wは前後どちらにも, 性質 (∗)を満たしながらこれ以上伸ばせない. 言い換えると,

– wはファイル先頭の文字で始まっている (a = 0)か, もしくはwの 1つ前の文字はアルファベッ
トや数字ではない (¬isalnum(S[a− 1])).

– wはファイル最後の文字で終わっている (b = L)か, もしくはwの 1つ後の文字はアルファベッ
トや数字ではない (¬isalnum(S[b])).

例えば以下に示す中身を持つファイルの英単語の出現は, 1, 22, 333, ..., mmmmmmmmmmmmmmmmmmmm22

の 22個である.�
1 1

2 22

3 333

4 4444

5 55555

6 666666

7 7777777

8 88888888

9 999999999

10 aaaaaaaa10

11 bbbbbbbbb11

12 cccccccccc12

13 ddddddddddd13

14 eeeeeeeeeeee14

15 fffffffffffff15

16 gggggggggggggg16

17 hhhhhhhhhhhhhhh17

18 iiiiiiiiiiiiiiii18

19 jjjjjjjjjjjjjjjjj19

20 kkkkkkkkkkkkkkkkkk20

21 lllllllllllllllllll21

22 mmmmmmmmmmmmmmmmmmmm22

5

さて, ある文字数 (例えば i文字)の英単語が現れる確率を, 以下のこととする. まず適当なMを定める. i

文字の英単語が現れる確率とは,ファイル中に現れる i文字の英単語の出現回数を ci, C = c1+c2+· · ·+cM−1

としたときの, ci/Cのことであるとする. 本来Mは,あり得る単語長の最大値 +1とすべきであろうが,本問
ではM = 21とする. 言い換えれば 21文字以上の英単語は稀だとして無視することにする. 上記の例であれ
ば, 1文字から 22文字の単語が一度ずつ出現しているため, c1 = c2 = · · · = c22 = 1, C = c1+ · · ·+c20 = 20

となり, i文字の英単語が現れる確率は 1/20 (1 ≤ i ≤ 20)ということになる.

ファイルをすべて読み取れば ciを求めることは簡単だが, ここではそれをより高速に調べるために, サ
ンプリングを行うことでこれを達成する.

具体的には以下を行う.

1. 長さM の配列 hを用意し全要素を 0に初期化する. h[i] (i < M)は長さ iの英単語の出現回数を格
納する (よって, h[0]はずっと 0のままのはずである).

2. 以下を多数 (n)回繰り返す

2-1. 0以上 L未満の (一様)乱数を発生させる. それを xとする.

2-2. ファイルの xバイト目の文字がアルファベット (大文字, 小文字)または数字でなければ何もし
ない

2-3. アルファベット (大文字, 小文字)または数字であったら, xバイト目を含む英単語の開始位置, 終
了位置を求め, そこから長さ (lとする)を求める. ただし長さがM 以上だとわかったら l = M

としておく.

2-4. l < M ならば, 長さ lの英単語が出現したことを, hに反映する

3. 配列 hに記録された値を元に, 求める確率の近似値を計算し, double型の配列 pに格納する.

乱数を使ったサンプルで計算した値のため, p[i]が求める確率に一致している必要はないが, 乱数が実
際に一様であれば, n → ∞のときに p[i]→求める確率 となる必要がある.

以下は乱数を発生させるためのデータ構造 (prng t) と, それを初期化する関数 prng init, 0以上 L未
満の整数をランダムに発生させる関数 (prng rand int)である.�

1 #pragma once

2 #include <stdint.h>

3

4 typedef struct {

5 uint64_t x;

6 } prng_t;

7

8 void prng_init(prng_t * rg, uint64_t seed);

9 uint64_t prng_rand_int(prng_t * rg, uint64_t L);�
1 #include __PRNG_H__

2

3 void prng_init(prng_t * rg, uint64_t seed) {

4 const uint64_t mask = (1UL << 48) - 1;

5 rg->x = seed & mask;

6 }

7

8 /* 0 <= x < L なる乱数を返す */

6

9 uint64_t prng_rand_int(prng_t * rg, uint64_t L) {

10 const uint64_t a = 0x5deece66dull;

11 const uint64_t c = 0xb;

12 const uint64_t mask = (1UL << 48) - 1;

13 uint64_t x = rg->x;

14 uint64_t next = (a * x + c) & mask;

15 rg->x = next;

16 return next % L;

17 }

例えば以下のようにして使う. seedは乱数の種 (64 bit符号なし整数)である. 種が同じなら発生する乱
数の系列は同じである.�

1 prng_t rg[1];

2 prng_init(rg, seed); /* 初期化 */

3 for (...) {

4 uint64_t x = prng_rand_int(rg);

5 ...

6 }

以下の関数 word lenは, 長さ Lの文字列 Sの, i (< L)バイト目を含む英単語の長さを求める関数であ
る. ただしそれが M以上の場合は Mを返し, 文字列 Sの iバイト目がアルファベットまたは数字でない場
合は, 0を返す.�

1 #include <assert.h>

2 #include <ctype.h>

3

4 /* S[i]を含む単語の長さを返す. ただし,

5 長さがM以上 -> Mを返す.

6 S[i]が単語の一部でなければ (i.e., アルファベット・数字でない) -> 0を返す */

7 int word_len(char * S, long i, long L, long M) {

8 /* 単語の一部でない */

9 if (!isalnum(S[i])) return 0;

10 /* INV: S[a:b]はすべてアルファベット・数字 */

11 long a = i;

12 long b = i + 1;

13 /* 先頭を見つける. 長さ>=Mと判明したら break */

14 while (a > 0 && b - a < M && isalnum(S[a - 1])) {

15 a--;

16 }

17 assert(a == 0 || b - a == M || !isalnum(S[a - 1]));

18 /* 終わり+1を見つける. 長さ>=Mと判明したら break */

19 while (b < L && b - a < M && isalnum(S[b])) {

20 b++;

21 }

22 assert(b == L || b - a == M || !isalnum(S[b]));

23 assert(0 <= a);

24 assert(0 < b - a);

25 assert(b - a <= M);

26 assert(b <= L);

27 for (long j = a; j < b; j++) {

28 assert(isalnum(S[j]));

29 }

30 return b - a;

7

31 }

以下の関数 sample word lenは, ファイル (filename)に含まれる英単語長の確率分布の近似値を pに
返す関数の一部である. ただし Lは, filenameの大きさ (バイト数)である. M文字以上の単語は無視する.

n個の位置をサンプリングしてこれを求める.�
1 #define _GNU_SOURCE

2 #include <err.h>

3 #include <sys/types.h>

4 #include <sys/stat.h>

5 #include <fcntl.h>

6 #include <sys/mman.h>

7 #include <unistd.h>

8

9 #include __PRNG_H__

10 int word_len(char * S, long i, long L, long M);

11

12 /* filenameの最初の Lバイト中に現れる単語長の分布を p

13 に返す. Mバイト以上の単語は無視する(なかったものとみなす).

14 n個のサンプルをとる. そのための乱数の種がseed */

15 void sample_word_len(char * filename, long L, long n, uint64_t seed, long M, double p[M]) {

16 int fd = open(filename, O_RDONLY);

17 if (fd == -1) err(1, "open(%s)", filename);

18 ...;

19 prng_t rg[1];

20 prng_init(rg, seed);

21 long h[M];

22 for (int l = 0; l < M; l++) h[l] = 0;

23 for (long i = 0; i < n; i++) {

24 /* 0 <= x < L なる乱数発生 */

25 long x = prng_rand_int(rg, L);

26 /* xバイト目を含む単語の長さを求める */

27 int l = ...;

28 if (0 < l && l < M) {

29 /* 長さlの単語の出現を記録 */

30 h[l] += 1;

31 }

32 }

33 close(fd);

34 /* hを元に配列 pに答えを格納 */

35 ...;

36 }

サンプリングする位置は,乱数の種を seedにした prng t構造体 rg[1]に対し n回, prng rand int(rg,

L)を呼び出したときの返り値 x0, x1, · · · , xn−1とする. 特に, seedが同じである限り全く同じ場所からサ
ンプルを取り出さなくてはならず, したがって結果も同じにならなくてはならない.

これらを使った以下のプログラムは,�
1 #include <err.h>

2 #include <stdio.h>

3 #include <stdlib.h>

4 #include <sys/types.h>

5 #include <sys/stat.h>

6 #include <time.h>

8

7 #include <unistd.h>

8 #include __PRNG_H__

9

10 enum { M = 21 };

11

12 void sample_word_len(char * filename, long L, long n, uint64_t seed, long M, double p[M]);

13

14 /* ファイルのサイズを求める */

15 long get_file_size(char * filename) {

16 struct stat sb[1];

17 if (stat(filename, sb) == -1) {

18 err(1, "stat(%s)", filename);

19 }

20 return sb->st_size;

21 }

22

23 /* 時刻 (ns単位)を得る */

24 long cur_time_ns() {

25 struct timespec ts[1];

26 clock_gettime(CLOCK_REALTIME, ts);

27 return ts->tv_sec * 1000 * 1000 * 1000 + ts->tv_nsec;

28 }

29

30 int main(int argc, char ** argv) {

31 int i = 1;

32 char * filename = (i < argc ? argv[i] : "test2.txt"); i++;

33 long n = (i < argc ? atol(argv[i]) : 10000); i++;

34 uint64_t seed = (i < argc ? atol(argv[i]) : 1234567890); i++;

35 long L = get_file_size(filename);

36 /* 実行 + 測定 */

37 double p[M];

38 long t0 = cur_time_ns();

39 sample_word_len(filename, L, n, seed, M, p);

40 long t1 = cur_time_ns();

41 /* 結果の表示 */

42 for (int l = 1; l < M; l++) {

43 printf("%2d %.4f\n", l, p[l]);

44 }

45 printf("took %.6f sec to draw %ld samples from %s\n",

46 (t1 - t0) * 1e-9, n, filename);

47 return 0;

48 }

./sample word len filename n seed

として起動すると, ファイル名 filenameから n個の位置をサンプリングして, 単語長の分布を求める.

以下の問いに答えよ.

(1) 上記で示した sample word len を, 欠けているところを補って完成させよ (注: おそらく変更・加筆
が必要であろう部分を, . . .で示してあるが, 必ずしも他の場所を変更・加筆してはいけない・する必
要はない, ということを意図していない).

9

(2) prng rand intを Pthreadのmutex APIを使ってスレッドセーフな関数にせよ. スレッドセーフに
するとは prng rand intを, 複数のスレッドが呼び出しても 1スレッドの場合と同じ動作をすると
いう意味である. つまり, 全スレッドが合計で同じ回数呼び出したときに返される値の多重集合1が,

スレッド数によらず同じであることを意味する. 必要ならば, prng t構造体も変更せよ.

(3) prng rand intを non-blockingなスレッドセーフ関数にしたい. ここで non-blockingとは, あるス
レッドが運の悪いタイミングで実行を preemptや suspendされて長時間停止したとしても, 他のス
レッドが進捗できる (乱数を取得できる) ことを言う. mutexを使った実装はなぜ non-blockingでは
ないのかを説明せよ.

(4) prng rand intを non-blockingなスレッドセーフ関数にせよ.

(5) sample word len関数に必要な変更を行って, 複数のスレッドが並列にサンプリングを行うように
せよ. 同じ引数を与えれば, スレッド数によらず, 元のプログラムと全く同じ結果が出るようにする
こと.

(6) そのように変更したプログラムを, 4個のプロセッサ (コア)を搭載したマシンで実行した. このとき
の性能について述べたものとして, 正しいものは以下のどれか? ただし, ファイルはキャッシュされ
ていない状態であるとする.

(a) スレッド数を 2以上にしても, スレッド数 1のときと比べて殆ど性能向上しない.

(b) 4スレッド程度まで性能向上するが, それ以上はほとんど性能向上しない.

(c) 4スレッドよりずっと多くのスレッド数まで性能向上する.

(7) 前問について, そうなる理由を述べよ.

(8) ファイルがキャッシュされていない状態で, スレッドを用いずにこのプログラムの性能を同様に向上
させる方法がある. その方法と, その方法でなぜ性能が向上するのか述べよ.

1各要素が現れる回数までを含んだ集合

10

3

Linuxは vruntimeという値を各スレッドに対して保持しながらスケジューリングを行っている.

(1) Linuxは vruntimeをどのように維持しているか (各スレッドの vruntimeをどのように更新している
か)述べよ.

(2) Linuxは vruntimeをスケジューリングにどのように利用しており, そしてそれによって, どのよう
な望ましい性質を達成しているかを述べよ.

11

4

Unix OSがプログラムの起動を高速化するのに行っているいくつかの工夫を, プログラムの起動に必要
な一連のステップに沿って述べよ.

問題は以上である

12

