
2020年度オペレーティングシステム期末試験

2020年 1月 19日 (火)

� 問題は 4問

� この冊子は，表紙が 1ページ (このページ), 問題が 2-9ページからなる

� 解答用紙の Submitは何度行っても良く, 最後に Submitしたものだけが受け付けられるので, 試験終了や, そ

の間際になるのを待たずに各自のタイミングで行うこと

� 試験終了後に Submitするのは不正行為となる (Submitはできてしまうが, Submitした時刻が記録されてお

り, 後からそれが発覚することになるので, 決して行わないよう注意せよ)

1

1

以下の会話を読んで, その下の問に答えよ.

駒場 (以下K): 俺のおかんがね, 好きなシステムコールがあるらしいんやけど, その名前をちょっと忘れたらしく

てね

内海 (以下U): ほな俺がね, おかんの好きなシステムコール一緒に考えてあげるから, どんな特徴言うてたかって教

えてみてよ～

K: なんでもおかんが言うにはね, そのシステムコールは, 一つのシステムコールでファイルを読むことにも書くこ

とにも, 使えるいうねんな

U: ほ～, (a) やないか. その特徴はもう完全に (a) やがな. すぐわかったよこんなもん～

K: ちょっとわからへんのよな. 俺も (a) と思ったんやけどな, おかんが言うにはな, OSの初心者でもman見

れば簡単に使えるやろ言うねん

U: ほ～, ほな (a) と違うなあ. 何しろ (a) は引数の順番とか絶対覚えられへんし, OSの初心者はman

見てもなんのこっちゃかようわからんよ. ほなもうちょっと詳しく教えてくれる?

K: おかんが言うにはな, ファイルの読み書きとは無関係にメモリを割り当てることにも使えるいうねん

U: (a) やないかい! (a) は実はメモリ割り当てのための Cのライブラリ関数 (b) の中でも普通

に呼び出されとんのやから. (a) がなんでもやるせいで, メモリを割り当てる Unixの古くからのシス

テムコール (c) はもういらん思われてて, 肩身せもーてしゃーないんやから

K: 俺も (a) と思ったんやけどな, おかんが言うにはな, 引数とかも単純で, すぐに使える言うねん

U: (a) ちゃうやないかい! いくらOSに慣れた人でも, あの引数の個数と, 意味不明な並び順は絶対にmanか

らコピペせな使えんのよ. (a) ちゃうよ. 他になんか言ってなかった?

K: 便利なだけやのうて, 効率よくファイルを読み書きするのにもいいらしいねんな. 物理メモリより大きいくらい

のファイルの場合でもシステムコールの呼び出し自身は一瞬で終わる言うねん

U: (a) やないかい! (a) はOSがやってるメモリ管理の仕組みと一体的に動いていて, 大きなファイル

を (a) しても,

(2) そのときには実際のファイルとの入出力はやらずに終わるんやから～. その特徴を生かして, 大きなファ

イルの (d) を (e) に読み書きするときなんかに, 特に有用やねんから～. 実はその特徴を生かして,

(3) コマンド実行するたびに (a) はいっぱい使われてんねんから～

K: でもようわからんのよ. おかんが言うにはな, 名前だけ見ればなにしおるシステムコールかすぐにわかる言う

ねん

U: そら (a) ちゃうよ! Unixのシステムコールは, 文字数減らすために, 初めての人へのわかりやすさとか考

えてへんからね! ファイルを作るシステムコールが, create fileとかやのーて, (f) やからね! 一文字

削りたいがために, ちゃんとした英単語になってへんからね!

2

K: 他にも, OSがメモリ管理に使っているテクニックで, プロセスを作るシステムコールの

(4) (g) を高速化するのにも使われている, (h) っていうのがあるらしいねんけどな, (a)

の実装でもそのテクを使うてるらしいねんな. そのおかげで, 大きなファイルを

(5) (i) が読み書きした場合にも, メモリが効率的に使えるらしいねん. あと使い方によって,

(6) プロセスをまたがって (j) することもできるんやって.

U: 完全に (a) よそれは!

K: でもおかんが言うには (a) やないっていうんねん

U: ほしたら (a) ちゃうよそれは! どないなっとんねん～

K: いや, おとんが言うには, closeちゃうか言うねん

U: いや絶対ちゃうやろ, もうええわ, ありがとうございました～

(1) (a)～(j) の空欄に当てはまる単語や短い語句を書け

(2) 下線部 (2)において, 「そのときには実際のファイルとの入出力はやらずに終わる」とあるがでは実際のファ

イルとの入出力はいつどういうきっかけで行われるのか?

(3) 下線部 (3) 「コマンド実行するたびに (a) はいっぱい使われて」いるとあるが, 何を目的としていっぱ

い使われているか, そして, なぜそこで (a) を使うことが効果的なのか述べよ

(4) 下線部 (4) で述べられている (g) を高速化する仕組みはどのようなものか, (h) との関係がわか

るように説明せよ

(5) 下線部 (5) 「 (i) が読み書きした場合にも, メモリが効率的に使える」のはなぜか. 特に, (a) を

使わずにそれをした場合と対比させた上で答えよ

(6) 下線部 (6) 「プロセスをまたがって (j) する」の仕組みを説明せよ

3

2

スレッドに CPUを割り当てる (スケジューリングする) 際の目標や, それを達成するための仕組みについて考える.

一般に OSがスレッドをスケジューリングする際,

利用効率: CPUを必要とするスレッドに CPUを割り当てる,

公平性: CPUを必要なスレッド間で CPU割当時間を均一に近くする,

応答性: 対話的アプリケーションが CPUを必要とした際に短い遅延時間で CPUを割り当てる,

ことなどを目標とする.

現在の Linux のスケジューラでは, 各スレッドの vruntime という値を記録, 更新することでこれを達成してい

る. 大雑把に言えば vruntimeは各スレッドが使用した CPU時間ということで, CPUをスレッドに割り当てる際,

vruntimeが最小のスレッドに割り当てることで公平性を達成する.

しかし文字通り, 「スレッドの vruntime = そのスレッドが使用した CPU時間」としてしまうと不都合がある.

以下の問に答えよ.

(1) どのような不都合か? あげた目標のどれが達成できなくなるかを具体的に説明せよ

(2) 通常の環境でプロセスは 100個以上立ち上がっていることが珍しくないが, だからといって計算をするプログ

ラムを実行したときに, その実行速度が, 他のプロセスがない場合と比べて 1/100 になる (CPUが 1/100しか

割り当てられない)わけではない. それは OSが「CPUを必要とするスレッドに CPUを割り当てる」からな

のだが, その具体的な仕組みについて説明せよ

(3) 無限ループするプログラムを実行してもマウスは動くし, 端末ソフトやエディタも動作を続ける. つまり, プロ

グラム自身はずっと CPUを使い続けるように書かれていても, CPUがそのスレッドに独占されるわけではな

い. その具体的な仕組みについて説明せよ

(4) vruntimeが文字通り, 「スレッドの vruntime = そのスレッドが使用した CPU時間」というわけではないと

述べたが, Linux OSは実際にスレッドの vruntimeどのように維持, 更新しているのか, 説明せよ.

4

3

以下の問に答えよ.

(1) ファイル名 F と整数 n ≥ 0が与えられ, F の最初の n行 (F が n行に満たないときは F の全て)を, 標準出力

に出力する関数, head(F, n)を書け.

(2) ファイル名 F と整数 n ≥ 0が与えられ, F の最後の n行 (F が n行に満たないときは F の全て)を, 標準出力

に出力する関数, tail(F, n)を書け.

注 1: ただしどちらも大きなファイルに対して効率的に動くよう, 入出力の量がファイルの大きさではなく, 実際に

出力される部分の大きさに比例するような実装をせよ (端的に言えば, 余計な部分を大量に読み込まないよう

に, ということ).

注 2: ここで F の中の「行」とは, F 中の空でない部分文字列で, 以下の 3つを全て満たすものである.

1. その最後の文字は, 改行文字 (’\n’)であるかまたは, ファイルの最後の文字である

2. その最初の文字は, ファイルの先頭の文字であるかまたは, 改行文字の直後の文字である

3. 最後の文字以外は改行文字ではない

形式的には, ファイルが n文字から成り, それらを先頭から c0, c1, · · · , cn−1と書くことにすると, i文字目で始

まり j(≥ i)文字目で終わる部分文字列 ci, ci+1, · · · , cj が「行」であるとは, 以下を満たすときを言う.

1. cj が改行文字であるか, j = n− 1

2. i = 0であるか, ci−1 が改行文字

3. ci, ci+1, · · · , cj−1 は改行文字でない

例えば, F の中身が

a, b, c,nl, d, e, f, g,nl, h, i

であった場合 (nlは改行文字を表すとする), このファイルは以下の 3行

a, b, c, nl d, e, f, g, nl h, i

から成っている. F の中身が

a, b, c,nl, d, e, f, g,nl, h, i,nl

であった場合は,

a, b, c, nl d, e, f, g, nl h, i, nl

から成っている (この場合も 3行).

5

4

以下の問いに答えよ.

2分探索木は, 以下の条件を満たすデータ構造である.

� 各ノードにひとつの値が格納されている. 以降, あるノード nに格納されている値のことを単に「nの値」と

呼ぶことにする

� 各ノードには左の子, 右の子がいるかもしれない

� あるノード nに左の子 lがいる場合, l及び lの子孫全てのノードmに対し, nの値 > mの値である

� あるノード nに右の子 rがいる場合, r及び rの子孫全てのノードmに対し, nの値 < mの値である

下図は 2分探索木の一例である.

0.3

0.7

0.9

1.2

1.3

1.8

1.5

2.5

2.8

3.2

4.0

4.8

以下は 2分探索木を Cの構造体として表したものである.�
1 //% file: bst_1.c

2 /* 2分探索木のノード */

3 typedef struct node {

4 double val; /* ノードの値 */

5 struct node * children[2]; /* 子ノード (いない場合は 0) */

6 } node_t;

7 /* 2分探索木 */

8 typedef struct {

9 node_t * root;

10 } bst_t;

2分探索木に対する値の挿入 bst insertと, 検索 bst searchを考える.

� bst t * t = mk bst() : 空の 2分探索木を作って返す.

� bst insert(bst t * t, double x) : 2分探索木 tに xを挿入する

� bst search(bst t * t, double x) : 2分探索木 tに xが挿入されていれば 1を, なければ 0を返す

以下はそれらを Cの関数として表したものである.

6

�
1 //% file: bst_2.c

2 /* 2分探索木のノードを作る */

3 node_t * mk_node(double val) {

4 node_t * n = malloc(sizeof(node_t));

5 if (!n) err(1, "malloc");

6 n->val = val;

7 n->children[0] = n->children[1] = 0;

8 return n;

9 }

10 /* 空の 2分探索木を作る */

11 bst_t * mk_bst() {

12 bst_t * t = malloc(sizeof(bst_t));

13 if (!t) err(1, "malloc");

14 t->root = 0;

15 return t;

16 }

17 /* tから始まるノードの下にノード nを挿入 */

18 int bst_insert_rec(node_t * t, node_t * n) {

19 double x = n->val;

20 /* 重複 (挿入しない) */

21 if (x == t->val) return 0;

22 /* valが小さい->左 (which_child == 0), 大きい->右 (which_child == 1) */

23 int which_child = x > t->val;

24 node_t * child = t->children[which_child];

25 if (child == 0) {

26 /* そっちに子供はいない -> nがその子供になる */

27 t->children[which_child] = n;

28 return 1;

29 } else {

30 /* そっちに子供はいる -> nをその子孫にする */

31 return bst_insert_rec(child, n);

32 }

33 }

34 /* 2分探索木への挿入 */

35 int bst_insert(bst_t * t, double val) {

36 node_t * n = mk_node(val);

37 node_t * root = t->root;

38 if (root == 0) {

39 /* 空の木 -> nが根に */

40 t->root = n;

41 return 1;

42 } else {

43 /* 空でない -> nを根の子孫に */

44 return bst_insert_rec(root, n);

45 }

46 }

47 /* tの下を探索 */

48 int bst_search_rec(node_t * t, double val) {

49 /* 見つかった */

50 if (val == t->val) return 1;

51 /* valが小さい->左 (which_child == 0), 大きい->右 (which_child == 1) */

52 int which_child = val > t->val;

53 node_t * child = t->children[which_child];

54 if (child == 0) {

55 return 0;

56 } else {

57 return bst_search_rec(child, val);

58 }

7

59 }

60 /* 2分探索木の探索 */

61 int bst_search(bst_t * t, double x) {

62 node_t * root = t->root;

63 if (root == 0) {

64 /* 空の木 */

65 return 0;

66 } else {

67 /* 空でない木 */

68 return bst_search_rec(root, x);

69 }

70 }

この 2分探索木を, 複数のスレッドが並行にアクセスしても正しく動作するようにする (スレッドセーフにする)

ことを考える. ここで「正しく動作する」とは, 挿入した値が見つからなかったり, 挿入していない値が見つかった

りすることがないということである. なお本問では, 値が削除されることはない.

正しさの厳密な定義は面倒なので述べないがさしあたり以下の (複数のスレッドが並行して多数の値を挿入し, そ

れらが全て終わってからそれらの値が見つかること, それら以外の値が見つからないことを確かめる)プログラムが

エラーを起こさずに終了することでそれを確かめる.�
1 //% file: bst_3.c

2 /* 現在時刻 */

3 double cur_time() {

4 struct timespec ts[1];

5 clock_gettime(CLOCK_REALTIME, ts);

6 return ts->tv_sec + ts->tv_nsec * 1.0e-9;

7 }

8

9 int main(int argc, char ** argv) {

10 int i = 1;

11 long n = (i < argc ? atol(argv[i]) : 1000000); i++;

12 bst_t * t = mk_bst();

13 double t0 = cur_time();

14 /* 並行にn個の値を挿入 */

15 #pragma omp parallel for

16 for (long i = 0; i < n; i++) {

17 if (bst_insert(t, sin(2 * i)) == 0) {

18 fprintf(stderr,

19 "warning: sin(%ld) = %f duplicates a previous value\n",

20 2 * i, sin(2 * i));

21 }

22 }

23 double t1 = cur_time();

24 /* 2n個の値を並行に検索 */

25 #pragma omp parallel for

26 for (long i = 0; i < n; i++) {

27 assert(bst_search(t, sin(2 * i)));

28 assert(bst_search(t, sin(2 * i + 1)) == 0);

29 }

30 double t2 = cur_time();

31 printf("OK\n");

32 printf("%f sec to insert %ld elements\n", t1 - t0, n);

33 printf("%f sec to search %ld elements\n", t2 - t1, 2 * n);

34 return 0;

35 }

(1) 並行プログラミングにおける「競合状態」とは何かを説明せよ.

8

(2) そのままではこの 2分探索木はスレッドセーフではない理由を, 上記の「正しさ」に基づいて説明せよ. 単に,

「競合状態があるから」などという答えを期待しているのではないので注意. どのような「正しくない」結果

が, どのようにして生じうるのかを具体的に示すこと.

(3) 排他制御を用いてスレッドセーフな 2分探索木を実現せよ. 解答欄の mk bst, bst insert の中だけを変更し

て, 呼び出し側のコードは変更せずそのまま動作するようにすること.

(4) 排他制御を用いずにスレッドセーフな 2分探索木を実現せよ. 解答欄の mk bst, bst insert の中だけを変更

して, 呼び出し側のコードは変更せずそのまま動作するようにすること.

9

