
平成 28年度オペレーティングシステム期末試験

2017年 1月 24日 (火)

• 問題は 3問

• この冊子は，表紙 1ページ (このページ), 問題 2-10ページからなる

• 解答用紙は 1枚. おもてとうらの両面あるので注意すること.

• 各問題の解答は所定の解答欄に書くこと.

1

1

次の会話を読んで後の問いに答えよ．1

谷町さん (以下 T): じゃあみんな，これから OSの試験の傾向と対策をやるぞ．桜子君，よろしく．

大野桜子先輩 (以下 O): あ，その前にひとつ宣伝をさせてください．2/8 にGoogleエンジニアの Parisa Tabriz さ

ん2 の講演があります．場所は多分，工学部 2号館のどこかになります．多分，セキュリティに関してと，女

子 IT教育について話してくれると思うわ．詳細未定だから，掲示板か，OS講義のホームページをチェックし

てね．

利奈みんとちゃん (以下 M): 2/8か～．もう試験も終わってますね．3年生が終わり，これから晴れて卒論生だっ

て時に，一日くらい授業がなくても大学に来るのもいいですね．

T: そうだ．セキュリティも，女子 IT教育もどちらも大事な話だからな．電子情報を始めとする情報系の学科が女

子学生に人気がないというのは，決して日本だけの問題だけではない3が，アメリカでも日本よりはマシ，4イ

ンドのように半分近くが女子という国もある．5 東大の情報系学科は，日本全体の電気通信の平均値よりもな

お低い．

M: 今の時代，就職にも有利だし，わりと直接，世の中の役にも立てるのにねぇ．

O: 仕事をする場所や時間だって，本来は融通が聞くはずだから，ワークライフバランスだって本来は取りやすいは

ずですよね．

T: そうなんだ．しかし実際にそうなっていないところが日本の職場，もしかしたら文化の問題だよね．さて，今は

このくらいにして，桜子君の講義を始めようか．

O: はい，OSなしにはセキュリティも何も語れませんからね．まず，τ 先生の OSの試験は毎年いろいろ変わった

問題が出ているように見えるけど，よく見るとワンパターンなのよ．特に必ず一問は， (a) に関する問

題が出るの．

M: ギソウケッコン?

O: おいおい，ほとんど原形をとどめてないわね．

M: あー，そう言えばなんか聞いた気がしますけど，全くわかりませんでした．

O: ええっとじゃあ，コンピュータにはメモリが付いているってのは知ってるよね．

M: あー，はい，4GBとか，8GBとか．

O: そう，Bっていうのは，「バイト (byte)」の頭文字で，1バイトっていうのは，8 bitのこと．Gは 230 ≈ 109 だ

から，8GBだと，約 80億バイトを記憶できるできることになるの．で，当然のことながら 8GBのメモリを

読んだり書いたりするときには，「どの」1ないし数バイトを読みたいかっていうのを指定しないといけないよ

ね．それを指定する数字のことを， (b) っていうんだったよね．

M: そうでした．

1この話のキャラクタは，シス管系女子（原作 Piro）のキャラクタを利用させていただいています．http://system-admin-girl.com
2https://research.google.com/pubs/author36241.html
3http://tinyurl.com/hfubgbj “The gender gap in computer science is hurting U.S. businesses”
4e-stat http://tinyurl.com/2pcs5n によれば，「電気通信工学」「機械工学」など分野で 10%程度
5http://tinyurl.com/jl47ykf “Decoding Femininity in Computer Science in India”

2

O: で，この (b) には実は 2種類あるの．実際に，8GBのメモリにある，80億のバイトのどこを読むかを指

定する (b) は， (c) というの．でも実際にプログラムの中で使っている (b) はそれとは別

で， (d) というのよ．

M: あ～，そのへんから訳がわからなくなるんですよね．そもそも私，Cでプログラムを書いてますけど，メモリ

をアクセスしているなんて，意識してないんですけど．

O: うーん，まあ，そのへんを意識せずにかけるようになるのが高級言語の役割でもあるから，意識してない事自身

はOKなんだけどね．でも，普通の変数でも配列でも，代入した値を覚えるために，データは (e) かメ

モリに入ってないといけなくて， (e) は容量が小さいから，ほとんどのデータはメモリのどこかに入っ

ているわけよ．で，C言語の場合，あるデータがおいてある (d) を，知ることもできるよ．例えば以下

のプログラムで，変数 xの (d) ，それと，5行目のmallocで確保された領域の (d) を表示した

ければ，こんなプログラムを書けばいいわ．�
1 #include <stdio.h>

2 #include <stdlib.h>

3 int x;

4 int main() {

5 char * a = malloc(100);

6 (f)

7 return 0;

8 }

このプログラムをコンパイルして，実行するよ，それ!�
1 $ gcc -Wall print_addr.c

2 $./a.out

3 x : 6295620, malloc : 20836368

ここで表示されているそれぞれの数字が， (d) なのよ．

M: それと， (c) とはどういう関係にあるのでしょうか?

O: CPU は，すべてのメモリアクセス時に， (g) というデータ構造，と，その一部をキャッシュしている

(h) を参照して， (d) を (c) に変換して，メモリをアクセスしているのよ．この変換機構

を実装しているハードウェアを， (i) と呼んでいるよ．

M: 何のためにそんなややこしいことをするのですか? 素直に， (d) = (c) にしてしまえば，単純で，

余分な仕組みも要らなくていいんじゃないでしょうか（CPU もちょっとは速くなるだろうし）．

O: うん，それが一番大事なところだよね．やっぱりいちばん大きい理由は， (j) だね．これがないと

セキュリティも何もないからね．

M: う～ん，具体的にはどのように， (j) が達成されるのでしょうか?

O: (k)

3

M: なるほど～，なんとなくわかりました．

O: また， (i) があるおかげで，(l) 物理メモリを越えるメモリ割り当てをすることもできるようになるよ．そ

の自然な延長で，プロセスからメモリ割り当て要求を受けた際，その場ですぐに物理メモリを割り当てず，実

際にアクセスが合った時に初めて物理メモリを割り当てる， (m) という方式も可能になるよ．

M: なるほど～，物理メモリを越えるメモリを割り当てられるなんてすごいですね．なんとなく (i) の意義

がわかってきました．

O: もっとすごいこともできるよ．例えば，ファイルを効率的に読み書きできる， (n) というものがあるわ．

その仕組みはね， (o) ．

M: うぁー，なんか，コンピュータも奥が深いぞって思えてきました．

O: そうなのよ．とくに (i) は，普段あまり目に見えていないし，一見そんなことをする必然性がわかりにく

いんだけど，現代の計算機環境を構成する，超重要技術の一つなのよ．最近は，GPUとか FPGAとか，余分

なものをそぎ落として計算を効率化・高速化するということの重要性が高まってきていて，高速化のためには

(i) なんてものは要らない，なんて言う人もいるんだけど， (i) が(p) 高速化に果たしている役割

を無視して語ると，後で痛い目に合うとおもうわ．

M: ありがとうございました．ところで今は，τ 先生のOSの試験の傾向と対策の時間ですが，他にはどんな問題が

出るんですか?

O: そうねぇ，レパートリは (a) に関する問題，スレッドの競合状態，ファイルの読み込みとかキャッシュと

かに関する問題，資源の保護に関する問題，スレッドのスケジューリングに関する問題，色々な場合のメモリ

使用量に関する問題，くらいしかないのよ．あと，形式的には，会話に沿って言葉を答えさせたり，説明をさ

せる問題，実際のプログラムを読ませたり書かせたりする問題，あとは自由記述形式の問題，を混ぜてること

がほとんどね．最近は会話形式がないこともあるけどね（きっとネタが思いつかなかったんだろうね）．

M: ずばり今年の予想は?

O: ずばり， (a) に関する問題が会話形式で，スレッドの競合状態に関する問題がプログラム形式で，さらに

資源保護に関する問題が自由記述形式で出るわ．間違いない．

M: お～，じゃあ，これをツイートしときます!

O: これを読んでる今じゃもう遅いけどね（笑）!

• (a) ～ (e) に当てはまる単語を答えよ．

• (f) に入る適切なプログラム片を答えよ．

• (g) ～ (i) に当てはまる単語を答えよ．

• (j) に当てはまる言葉 (短い句)を答えよ．

• (k) に適切な， (j) を達成するための仕組みを文章で答えよ．

• 下線部 (l)を達成するための仕組みを， (i) がそのために備えている仕組みを踏まえながら答えよ．

• (m) に当てはまる単語を答えよ．

4

• (n) に当てはまる単語（一般的な単語，または，システムコール名）を答えよ．

• (o) に適切な， (n) を実現するための仕組みを文章で答えよ．

• 下線部 (p)にある， (i) が計算機の高速化に貢献している例をひとつ述べよ．何の高速化に貢献してい

るかと，どのようにその高速化が達成されているか，を述べよ．

5

2

(1) 以下の会話を読んでその次の問いに答えよ．

代官 (以下D): 越後屋，例のものは手に入れたか?

越後屋 (以下 E): はいお代官様，共用計算機のアカウントを手に入れました．

D: よし，この共用計算機は教員も使っている計算機じゃ．これで今度の試験問題も覗き放題じゃ．

E: で，ですがお代官様，単にアカウントを手に入れただけでは，他のユーザのファイルを覗き見ることはで

きないようになっています．

D: な，なに，それが南蛮から渡来したオーペーなんとかの力なのか?

E: オペレーティングシステムでございます．ファイルは，システムコールを使って読まれますが，オペレー

ティングシステムがそこでしっかりとファイルの読み書き権限をチェックします．

D: え，え～い，なんとかならんのか，越後屋!?

E: お代官様，拙者に知恵がございます．ファイルはハードディスクという金物に入っております．オペレー

ティングシステムとて単なるソフトウェア．システムコールもチェックをした後でハードディスクに命令

を出して，読んでいるにすぎません．したがって，オペレーティングシステムが発行するのと同じ命令

を出すプログラムを自分で書いてしまえばよいのです．

D: だ，だが越後屋，そのオペレーティングシステムとやらがどんな命令を出しているかはどうやって知るの

じゃ?

E: このオペレーティングシステムは，オープンソースと言いまして，ソースコードが公開されております．

ここにその，ソースコードを収めた，巻物がございます．これをそっくり真似すれば，直接ハードディス

クに命令を出せるというわけです．

D: 越後屋，おぬしも相当のワルよのう．

E: 何をおっしゃいますか，お代官様こそ．

D, E: うわーはっはっはっはっ. . .

越後屋は大きな誤解しており，このような試みは成功しない．オペレーティングシステムが，周辺機器を保護

しつつも，正当な呼び出し手順（システムコールの呼び出し）を経由すれば周辺機器を利用可能にしている仕

組みを，どのように「保護」と「利用可能」を両立させているのかに注目しながら，説明せよ．

(2) 以下の会話を読んでその次の問いに答えよ．

代官 (以下D): え～い，試験問題を盗み見ることはできなかった．こうなったらせめて，試験問題ができな

いよう，共用計算機を使えなくしてしまえ．越後屋～

越後屋 (以下 E): はい，お代官様

D: ここに，ひたすら CPUを使うプログラムがある．�
1 int main() {

2 for (; ;) { }

3 }

ワシのパソコンでこれを立ち上げると，CPUが 100%消費される．共用計算機でこれを立ち上げてしま

えば，あの OSの試験を作っておる，ほれ，なんとかいう，教員の作業はできなくなるはずじゃ．

6

E: タウラでございます．ですがお代官様，ご覧の通り，CPUが 100%消費されていても，マウスは動くし，

ctrl-cでそのプログラムを終了させることもできてしまいます．

D: それはなぜなのだ，越後屋!?

E: ひとつには，今時のパソコンは，お代官様のものを含め，ひとつのみならずたくさんの CPUを搭載して

いるということがございます．また，C言語で書かれたプログラムは，Cのコンパイラによって機械語

に変換されているということもございますので，無限ループを書いたつもりでも CPUを独占できていな

いという可能性もございます．

D: では一体どうすればよいのだ?

E: 機械語でプログラムを書き，そのプログラムを多数走らせるというアイデアはいかがでございましょう?

D: 越後屋，おぬしも相当のワルよのう．

E: 何をおっしゃいますか，お代官様こそ．

D, E: うわーはっはっはっはっ. . .

ここでも越後屋は大きな誤解しており，彼らの試みは成功しなかった．オペレーティングシステムが，特定の

プロセスによって CPUが独占され，他のプロセスを実行できなくなることがないようにしている仕組みを述

べよ．

(3) 以下の会話を読んでその次の問いに答えよ．

代官 (以下D): 共用計算機を使えなくすることもできんのか．こうなったらせめて少しでも，なんとかいう

担当教員 (まだ覚えていない) の作業を邪魔することができないものか．越後屋～

越後屋 (以下 E): はい，お代官様

D: CPUを独占することはできなくても，その担当教員が試験問題を作る時の道具，ほれ，イーなんとかい

うプログラム

E: イーマックス (Emacs)でございます．

D: そうそれじゃ，その動作を邪魔するとか，キー入力に反応するまでの時間を長くするとか，そういうこと

ができんのか?

E: お代官様．たしかに，OSはタイムシェアリングをしていますので，先ほどのプログラムをじゃんじゃん

走らせれば，そのようなことは可能かと．

D: 越後屋，おぬしも相当のワルよのう．

E: 何をおっしゃいますか，お代官様こそ．

D, E: うわーはっはっはっはっ. . .

またしても越後屋の浅い理解により，彼らの試みは成功しなかった．オペレーティングシステムが，独占を防

ぐのみならず，高負荷時においても対話的なプログラムの応答性が損なわれないようにしている仕組みを述

べよ．

7

3

n未満の素数をすべて求める並行プログラムを作りたい．ある数 xが素数であるか否かを判定するには，xを
√
x以

下のすべての素数で割ればよい（余りが 0になるものがひとつもないとき及びその時に限り，xは素数である）．

まず逐次プログラムの説明をする．以下は計算の途中状態を管理するための構造体である．�
1 typedef struct {

2 long * primes; /* これまでに見つかった素数の配列 */

3 long n_primes; /* これまでに見つかった素数の数 */

4 long next; /* 次に素数かどうかチェックする数 */

5 } prime_gen;

main関数ではこの構造体をひとつ以下のように初期化し，gen primesという関数を呼ぶ．なお n ≥ 55のとき，

n未満の素数の数は，

1 +
n

log n− 4

個以下であることが知られており，以下ではそれを用いて配列の要素数を割り当てている．�
1 int main() {

2 long max_n_primes = (n < 55 ? n : 1 + n / (log(n) - 4));

3 long * primes = (long *)calloc(max_n_primes, sizeof(long));

4 prime_gen pg;

5 pg.primes = primes; // 素数を格納する配列（初期状態：空）

6 pg.n_primes = 0; // 素数の数（初期状態: 0）

7 pg.next = 2; // 最初は 2から判定開始

8 gen_primes(&pg, n); // 本題

9 return 0;

10 }

gen primesが主要な関数で，初期状態の prime gen 構造体へのポインタ pgと，整数 nを受け取り，n未満の素

数を pg（の中の primes配列）に格納する．そのために gen primesは再帰的関数になっており，nがある程度大き

い時は，まず
√
n未満の素数をすべて生成し，それを用いてそれ以上の数が素数か否かを判定する．n ≤ 3の時は

自明（2以上 n未満の数が全て素数）である．以下で，⌈x⌉は，x以上の最小の整数を表す．�
1 void gen_primes(prime_gen * pg, long n) {

2 if (n <= 3) {

3 gen_primes_until(pg, n); /* 自明 */

4 } else {

5 long s = ⌈
√
n ⌉;

6 gen_primes(pg, s); /*
√
n未満を生成 */

7 gen_primes_until(pg, n); /* n未満を生成 */

8 }

9 }

gen primes until(pg, n)は，pgにすでに
√
n未満の素数が格納されている (∗)という条件のもと，n未満の素

数を生成する関数で，以下の通り．

8

�
1 void gen_primes_until(prime_gen * pg, long n) {

2 /*
√
n未満は格納されている条件のもと，n未満の素数を生成 */

3 while (1) {

4 long x = get_next(pg, n);

5 if (x == n) break; /* 終了 */

6 if (is_prime(pg, x)) { /* 素数? */

7 add_prime(pg, x); /* であれば追加 */

8 }

9 }

10 }

get nextは，次に判定すべき数を返す関数で，nextを返しつつ，nに達しない限り nextを 1増加させるだけで

ある．�
1 long get_next(prime_gen * pg, long n) {

2 /* 次に判定すべき数を返す */

3 long x = pg->next;

4 if (x == n) return n;

5 pg->next = x + 1;

6 return x;

7 }

is primeは，先と同じ条件 (∗)のもと，xが素数か否かを判定する (素数であるときに 1, そうでないときに 0を

返す) 関数である．�
1 int is_prime(prime_gen * pg, long x) {

2 long np = pg->n_primes;

3 /* これまでに見つかった
√
x以下の素数で試し割る */

4 for (long i = 0; i < np; i++) {

5 long p = pg->primes[i];

6 if (p * p > x) break;

7 if (x % p == 0) return 0; /* 約数が見つかった */

8 }

9 return 1;

10 }

また，add prime(pg, x)は，xを素数の primes配列の末尾に追加する関数で，以下の通り．�
1 void add_prime(prime_gen * pg, long x) {

2 /* xを素数の配列に加える */

3 long np = pg->n_primes;

4 pg->primes[np] = x;

5 pg->n_primes = np + 1;

6 }

さて今このプログラムを並列に実行して高速化するために，gen primes untilを複数のスレッドで実行する．

9

OpenMPの parallel構文:�
1 #pragma omp parallel

2 文

は，ある数（通常，搭載プロセッサ数．本問題では複数であるという以外，重要ではない）のスレッドを生成し，各

スレッドが（同じ）「文」を実行する（スレッドが実行するのは#pragma omp parallelの直後の一文のみ）．全ス

レッドがその文の実行を終えたら，parallel構文全体の実行が終了し，その次の文に移る（それは再び一つのスレッ

ドだけで実行される）．

これを用いて，gen primes内の gen primes until(pg, n)を各スレッドが実行するように，プログラムを変更

した．�
1 void gen_primes(prime_gen * pg, long n) {

2 if (n <= 3) {

3 gen_primes_until(pg, n); /* 自明 */

4 } else {

5 long s = ⌈
√
n ⌉;

6 gen_primes(pg, s); /*
√
n未満を生成 */

7 #pragma omp parallel

8 gen_primes_until(pg, n); /* n未満を生成 */

9 }

10 }

このプログラムには色々な間違いがある．以下ではその間違いを一つずつ考察し，修正する．なお，目標は配列

primesに n未満の素数が漏れ・重複なく並ぶことであり，順番は必ずしも逐次プログラムで実行した時のそれと同

じ（昇順）でなくても良い．

(1) 間違いのひとつとして，get next関数が，同じ値を 2度以上返してしまう（結果として同じ値が 2度以上，

primes配列に格納されてしまう）というものがある．どのようにそれが生じずるかを，あり得る実行順序を

具体的に説明し，それが起きないように，get next関数を修正せよ．なお，もし必要ならば，prime gen構

造体に要素を追加し，main関数に適切な初期化文を追加をしてもよい．

(2) 次の間違いとして，add primeで加えた数が，終了時に primes配列に入っていない，ということも起きうる．

前問題同様，それを生ずる実行順序を具体的に説明し，それが起きないように，add primeを修正せよ．もし

必要ならば，prime gen構造体に要素を追加し，main関数に適切な初期化文を追加をしてもよい．

(3) 前問までの修正を施したプログラムにおいて，「素数でない数が素数と判定されてしまう」という間違いが起

きうるか? 起き得るならばそれを生ずる実行順序を具体的に説明し，起き得ないならばその理由を説明せよ．

問題は以上である

10

