
平成 27年度オペレーティングシステム期末試験

2016年 1月 19日 (火)

• 問題は 3問

• この冊子は，表紙 1ページ (このページ), 問題 2-8ページからなる

• 解答用紙は 1枚. おもてとうらの両面あるので注意すること.

• 各問題の解答は所定の解答欄に書くこと.

1



1

巨大なメモリを搭載するコンピュータ上で，以下の A0～A4までの 5種類プログラムを走らせることを考える．

A0:�
1 int main() {

2 char * a = malloc(A);

3 /* --- */

4 }

A1:�
1 int main() {

2 int fd = open(file, O_RDONLY);

3 char * a = malloc(A);

4 ssize_t r = read(fd, a, A);

5 read_array(a, B); /* 中身は後述 */

6 /* --- */

7 }

A2:�
1 int main() {

2 int fd = open(file, O_RDONLY);

3 char * a = mmap(0, A, PROT_READ|PROT_WRITE, MAP_PRIVATE, fd, 0);

4 read_array(a, B); /* 中身は後述 */

5 /* --- */

6 }

A3:�
1 int main() {

2 int fd = open(file, O_RDONLY);

3 char * a = mmap(0, A, PROT_READ|PROT_WRITE, MAP_PRIVATE, fd, 0);

4 write_array(a, B); /* 中身は後述 */

5 /* --- */

6 }

A4:�
1 int main() {

2 int fd = open(file, O_RDWR);

3 char * a = mmap(0, A, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0);

4 write_array(a, B); /* 中身は後述 */

5 /* --- */

6 }

ここで read array(a, m)および write array(a, m)は，それぞれ aから始まる mバイトを読み出すまたは書

き込む関数で，以下に相当する動作をする．

2



�
1 void read_array(char * a, ssize_t m) {

2 for (ssize_t i = 0; i < m; i++) {

3 a[i];

4 }

5 }

6 void write_array(char * a, ssize_t m) {

7 for (ssize_t i = 0; i < m; i++) {

8 a[i] = ’x’;

9 }

10 }

(1) A0を走らせた時消費する物理メモリの量 (おおよその値)を答えよ．答えはプログラム中のパラメータ A, B

を用いた式で表せ．ただし Aや Bはある程度 (少なくとも数十M)の大きな値である．A1～A4についても同

様に答えよ．

以下を仮定してよい．

• システム関数呼び出し (open, malloc, mmap, read)は全て成功する．

• readは要求したバイト数分のデータを実際に読み出す．

• 関数呼び出しやメモリアクセスが実際の計算には不要だからといって，コンパイラの最適化で除去され
ることはない (プログラムはあくまで書かれた通りのことを実行する)．

• 上記プログラム中で明示的に行われるメモリ割当量に比べて，それ以外に必要な (例えばプログラムの

コードやスレッドのスタックのための) メモリ量は小さいと考え，無視する (0とする)．

なお，消費されるメモリ量は，走らせているプログラムが/* --- */の行に達した時点での消費量とする．

(2) A0を P 個同時に立ち上げるとどうか? 答えは A, B, P を用いた式で表せ．消費されるメモリ量は，P 個全て

のプロセスが/* --- */に達し (そこでしばらく停止し)たところでの消費量とする．A1～A4についても同様

に答えよ．

(3) 以下はOSがメモリ管理のために用いてる技法であるが，それぞれどのようなもので，どのような時にどのよ

うな利点があるか，簡潔に説明せよ．

(a) 要求時ページング

(b) Copy on write

(4) (2)の A2および A3の物理メモリ使用量の結果を，要求時ページング，copy on writeという言葉を，関連があ

れば適宜使いながら，それぞれ説明せよ．

3



2

以下の関数 f0～f3はいずれも，あるメモリ領域に N 回 1を足し，終了後にその値を表示するという関数であり，

対象となるメモリ領域だけが異なる (for文以降はほとんど共通; 重要部に下線が引いてある)．

f0:�
1 int x = 0;

2 void * f0(void * _) {

3 for (int i = 0; i < N; i++) {

4 x = x + 1;

5 }

6 printf("it’s %d\n", x);

7 return 0;

8 }

f1:�
1 void * f1(void * _) {

2 int * p = (int *)calloc(1, sizeof(int));

3 for (int i = 0; i < N; i++) {

4 *p = *p + 1;

5 }

6 printf("it’s %d\n", *p);

7 return 0;

8 }

f2:�
1 void * f2(void * arg) {

2 int * p = ((arg t *)arg)->m;

3 for (int i = 0; i < N; i++) {

4 *p = *p + 1;

5 }

6 printf("it’s %d\n", *p);

7 return 0;

8 }

f3:�
1 void * f3(void * _) {

2 int fd = open("/tmp/zero_file", O_RDWR);

3 int * p = mmap(0, sizeof(int), PROT READ|PROT WRITE, MAP SHARED, fd, 0);

4 for (int i = 0; i < N; i++) {

5 *p = *p + 1;

6 }

7 printf("it’s %d\n", *p);

8 return 0;

9 }

4



ただし，f2における arg tは以下のような構造体である．�
1 typedef struct {

2 int * m;

3 } arg_t;

また，f3における/tmp/zero fileは事前に作られ，中身はすべて 0で埋まった 4 (sizeof(int))バイトのファイ

ルであるとする．

f0～f3それぞれの関数を，P 個のスレッドもしくは P 個のプロセスで並行に走らせる．例えば f0を P 個のス

レッドで走らせる場合，�
1 void run_threads() {

2 arg_t args[P];

3 int * m = (int *)calloc(1, sizeof(int));

4 for (int i = 0; i < P; i++) {

5 args[i].m = m;

6 }

7 pthread_t tids[P];

8 for (int i = 0; i < P; i++) {

9 pthread create(&tids[i], 0, f0, &args[i]);

10 }

11 for (int i = 0; i < P; i++) {

12 pthread_join(tids[i], 0);

13 }

14 }

のようにする．f0を P 個のプロセスで走らせる場合，�
1 void run_procs() {

2 arg_t args[P];

3 int * m = (int *)calloc(1, sizeof(int));

4 for (int i = 0; i < P; i++) {

5 args[i].m = m;

6 }

7 pid_t pids[P];

8 for (int i = 0; i < P; i++) {

9 pids[i] = fork();

10 if (pids[i] == 0) {

11 f0(&args[i]);

12 exit(0);

13 }

14 }

15 for (int i = 0; i < P; i++) {

16 waitpid(pids[i], 0, 0);

17 }

18 }

のようにする (2-6行目は run threadsと run procsで共通である)．

5



f1～f3を走らせる場合は，それぞれの中の f0と書かれた部分 (run threadsの 9行目および run procsの 11行

目)を，適切な関数名に置き換えるだけである．これで都合 2 (run threads, run procs) × 4 (f0～f3) = 8通り

のプログラムができたことになる．各スレッド (ないしプロセス)が，“it’s x”という表示をするので，いずれの

プログラムもそのような行を P 個表示することになる．

以下では N = 10000000, P = 2とする．以下の問いに答えよ．

(1) 8通りのプログラムそれぞれについて，その出力としてあり得るものを，以下の中から全て選び，記号で答

えよ．

(ア)�
1 it’s 8193611

2 it’s 10000000

(イ)�
1 it’s 8193611

2 it’s 10242445

(ウ)�
1 it’s 10000000

2 it’s 10000000

(エ)�
1 it’s 10000000

2 it’s 10242445

(オ)�
1 it’s 10193611

2 it’s 10242445

(カ)�
1 it’s 19706152

2 it’s 20000000

(キ)�
1 it’s 19706152

2 it’s 20000001

(ク)�
1 it’s 20000000

2 it’s 20000000

6



解答は，解答用紙の表で，あり得るケースにチェック (✓)を入れて答えること．

(例)

(ア) (イ) (ウ) (エ) (オ) (カ) (キ) (ク)

run threads f0 ✓ ✓ ✓ ✓
run threads f1 ✓ ✓ ✓ ✓

...
...

(2) 例えば (オ)のような出力が生じうるケースについて，それがどのようにして生じるのかを説明せよ．

(3) pthread mutex t型の大域変数 Mを用意し，各繰り返しの中で 1を足す操作の前後を pthread mutex lock(&M)

と，pthread mutex unlock(&M) ではさむことにする．

具体的には，f0であれば以下のように変更する．下線部が変更した部分．�
1 pthread mutex t M;

2 int x = 0;

3 void * f0(void * _) {

4 for (int i = 0; i < N; i++) {

5 pthread mutex lock(&M);

6 x = x + 1;

7 pthread mutex unlock(&M);

8 }

9 printf("it’s %d\n", x);

10 return 0;

11 }

f1～f3についてもほぼ同じ変更を施す (唯一の違いは，pthread mutex lock(&M), pthread mutex unlock(&M)

の呼び出しではさむのが，*p = *p + 1;である点)．

このようにしてできたプログラム達の出力はどうなるか? (1)と同じ形式で答えよ．

(4) 多くのプロセッサに備わる compare-and-swap命令について，その動作を説明せよ．

(5) compare-and-swap命令を用いて，pthread mutex lock, pthread mutex unlock で達成したのと同じよう

なことを達成することができる．具体的にどうすればよいか述べよ．答え方としては，f0の x = x + 1;ま

たは f1～f3の*p = *p + 1; の行を，どのように変更すればよいかを記せ (どちらを使っても良い)．

7



3

少年は指導教員から，「自分のノート PCのハードディスクの性能を測れ」と言われた．そこで少年は，自分の PC

(これはやや旧式で，SSDではなくハードディスクを搭載している) 上で 1GBのファイルを作り，それを読みだす

のにかかる時間を測定した．�
1 # largeという，1GB (1024 * 1024 * 1024 バイト)のファイルを作る

2 $ dd if=/dev/zero of=large bs=$((1024 * 1024)) count=1024

3 1024+0 レコード入力

4 1024+0 レコード出力

5 1073741824 バイト (1.1 GB) コピーされました、3.03388 秒、354 MB/秒

6 $ time cat large > /dev/null # cat で読み出し，時間を測る

7 real 0m0.149s

8 user 0m0.000s

9 sys 0m0.148s

少年はこの結果を持って，「1GBが 0.149秒で読めたとあるから，ハードディスクの読み出し性能は 1GB/0.149

秒 ≈ 6.7GB/秒くらいです，ついでに言うと，書き込み性能は ddの結果から，354MB/秒くらいのようですね」と

報告したところ，指導教員に (1) アホかと言われてしまった．そして，「ハードディスクの性能が測りたいなら，あ

ることに気をつけて測定しないとダメだ」と言われた．そこで (2) きちんと気をつけて測定したところ，�
1 $ time cat large > /dev/null

2 real 0m7.902s

3 user 0m0.007s

4 sys 0m0.212s

という結果が得られ，約 120MB/秒程度の性能となり，指導教員にはその数字ならあり得ると言われた．

次に，「1GBのファイルが 7.902秒で読み出せることはわかった．じゃあ，1GBのファイル中の，指定された 1KB

の部分 (だけ)を読めと言われたら，それにかかる時間はどのくらいか」と聞かれた．少年は調べてきますと言いつ

つ，「1GBが 7.902秒だから 1KBにかかる時間は，実験などしなくても簡単に計算できる」と思い，

7.902秒× 1KB/1GB ≈ 7.902× 10−6 ≈ 8µ秒

さも実験をしたようなふりをしつつ「約 8 マイクロ秒でした」と答えたところ，「ウソつけ」と言われしまった．

(3)「カタログに載っているこの数字を見れば，数ミリ秒より速いはずがないんだよ」とのことであった．

少年は，OSが行っているファイル読み書き性能が，いくつもの (4)ソフトウェア的な工夫によって達成されている

ことを学んだのであった．

以下の問いに答えよ．

(1) 下線部 (1)について，少年の測定はなぜ間違いなのか，説明せよ．6.7GB/秒という数字がハードディスクの

性能でないとしたら，いったいなぜこんな数字が出たのか?

(2) 下線部 (2)について，正しく測定するための手順 (の例)を述べよ．

(3) 下線部 (3)について，カタログに載っているどのような数値を元に，「数ミリ秒より速いはずがない」と判断で

きるのか?

(4) 下線部 (4)について，仮に 1KB読むのに数ミリ秒はかかるのだとしたら (仮に 1ミリ秒かかるとする)これを

比例させると，1GB読むのには 1000秒はかかる計算になる．それが実際には 7.9秒で読み出せているのはど

のような工夫を OSがしているからなのか?

問題は以上である

8



平成 27 年度オペレーティングシステム期末試験 2016 年 1 月 19 日 実施 解答用紙

(1)

1

所属学科 氏名

A0

A1

A2

A3

A4

(3)

(a)

(b)

(4)

A2

A3

run_threads

run_threads

run_threads

run_threads

run_procs

run_procs

run_procs

run_procs

f0

f1

f2

f3

f0

f1

f2

f3

(ア) (イ) (ウ) (エ) (オ) (カ) (キ) (ク)
(1)

(2)

run_threads

run_threads

run_threads

run_threads

run_procs

run_procs

run_procs

run_procs

f0

f1

f2

f3

f0

f1

f2

f3

(ア) (イ) (ウ) (エ) (オ) (カ) (キ) (ク)
(3)

(4)

(5)

2

A0

A1

A2

A3

A4

(2)



(1)3

(2)

(3)

(4)


