
平成 25年度オペレーティングシステム期末試験
Operating Systems: the Final Exam

2015年 2月 10日 (火)

February 10th 2015

• 問題は 3問

There are three problems.

• この冊子は，表紙 1ページ (このページ), 日本語の問題 2-7ページ, その英訳が 8-13ページから
成る.

This booklet consists of a cover page (this page), problems in Japanese (2-7 pages), and their English

translations (8-13 pages).

• 解答用紙は 1枚. おもてとうらの両面あるので注意すること.

There is an answer sheet. It is printed both sides.

• 各問題の解答は所定の解答欄に書くこと.

Write your answers to each problem in the designated box in the answer sheet.

1



1

次の会話を読んで後の, (1)から (7)の問いに答えよ (イラスト: Piro. シス管系女子より. 問題の内容と
は関係ありません).

みんとちゃん (以下M): う～ん, 不思議だなぁ.

大野桜子先輩 (以下O): みんとちゃん, どうしたの?

M: あ, 大野先輩! お疲れ様です. 今日大学の授業で，自分の PCで立ち上がっているプロセスやスレッド
を調べる方法を習ったんです． (a) ていうコマンドラインでできるって．そしたらなんとプロ

セスが 195個も立ち上がっていたんです!

O: ふ～ん，そうかもね．でも，何が不思議なの?

M: はい, こんなに周りにプロセスが立ち上がっていたら，普段私が授業や演習で作っているプログラムっ
て，本来のコンピュータの速度の，1/196 の速度でしか動いていないんじゃないかと思って．で，余
分なプロセスがほとんど走っていないサーバにログインして同じプログラムを走らせたんですけど，
ほとんど変わらないんです．

O: そりゃそうだよ，195個プロセス—てことは少なくとも 195個のスレッド—がいると言っても，その

ほとんどは，中断中という状態になっていて，CPUは割り当てられないのよ．

M: あ，そういえば授業でもそんなことを言っていたような．でもOSはどうやって，中断中のスレッド
とそうでないスレッドを区別するんでしょうか?

O: (b)

M: なるほど～．で，実行可能なスレッドが複数いる場合は，当然それらの間で CPUを分け合うんです
よね．

O: そうね．

2



M: 実行可能なスレッドの中には，私が演習で作ったみたいに，ひたすら計算だけをやってシステムコー
ルなんて一切呼ばないものも有りますね．システムコールを呼べばOSがそのタイミングで他のス
レッドに切り替えるとかできそうですけど，そうでないスレッドの場合，どうやってそのスレッド
から CPUを奪って，他のスレッドに切り替えるのでしょうか?

O: (c)

M: なるほどですね～．OSは，実行可能なスレッドを代わりばんこに実行しているんでしょうか?

O: ん～，ま，大雑把にはそう思っていてもいいけどもう少し賢いことをしているんだな．まず，「代わり
ばんこ」っていうのは，もう少しちゃんとアルゴリズムとして定式化するとどうなるかしら?

M: そうですね，まず，「実行可能なスレッド」のキュー (run queue) というのがあって，

(i) 実行中スレッドが他のスレッドに CPU を奪われる時は，もともと実行中だったスレッドを
run queueの末尾に入れ，run queueの先頭にあるスレッドを次に実行する．

(ii) 実行中のスレッドが中断するときは，run queueから外され，run queueの先頭にあるスレッ
ドを次に実行する．

(iii) 中断中のスレッドが復帰する (実行可能になる)ときは run queueの末尾に入る

そんなところでしょうか?

O: そうね, たしかにこれだと，常時実行可能なスレッドが複数あったら，きれいに代わりばんこに実行
されて，「公平性」っていう意味ではいいよね．でも，これだけだと，特にデスクトップ OSなんか
で重要な，ある目標が達成されないんだな．その目標は，「 (d) 」というものなの．

M: たしかにそうですね．あ，じゃあ，こうしたらどうでしょうか?

(i) さっきと同じ

(ii) さっきと同じ

(iii) 中断中の状態から復帰する (実行可能になる)ときは， (e)

O: それはいいかもしれないけど，でもそうすると今度は基本的な目標である「公平性」を損なうことに
なるんじゃない? 例えば，(f)こんなプログラムを書いたら，そのスレッドは，不当に多くの CPU

時間を得ることができてしまうよね．

実際のOSではこの (g)「公平性」と (d) を両立すべく，スケジューリングアルゴリズ

ムが作られているのよ．

M: ふえ～，たかが CPUを割り当てるだけなのに，結構頑張ってるんですねぇ．

3



(1) (a) には全てのプロセスを列挙する Linuxのコマンドが入る．それを (必要ならばオプショ
ンも含めて)書け．

(2) (b) にはどのような事象に対してOSがスレッドを，中断中にするかの説
明が入る．そのような事象を 3つ以上あげながら，適切な文章を書け．

(3) (c) には，長時間システムコールを発行せずに計算だけをするスレッドか
ら，OSがどのように CPUを奪うかの説明が入る．適切な文章を書け．

(4) (d) には，OSがスケジューリングの目標のひとつとしている項目が入る．適切な言葉
を書け．

(5) (e) には，みんとちゃんが当初示したアルゴリズムに対する単純な変更が入る．適切な
文を書け．

(6) 下線部 (f)はどんなプログラムか．概要を書け．

(7) 下線部 (g)の，両方の目標を達成するようなスケジューリングアルゴリズムを一つ考え，その概要
を示せ．

4



2

N バイトのファイルを配列に読み出し，その配列中のランダムなW バイトを読み出す様々なプログラ
ムを考える．以下の (1)～(5)の各プログラムについて，物理メモリの使用量はどのくらいになるか，答え
よ．いずれの場合も，OSカーネルおよび関わるプロセス全体での合計使用量を答えよ．ファイルと配列
を読み出すのに必要な以外の物理メモリは考えなくて良い．
ページサイズをP とする．解答は，以下の項，その定数倍 (2N , 2W など)，およびそれらの和 (N +2W ,

N + CN など)で表わせ．また，CWP ≪ N を仮定して良い．

N, W, CN, CW, NP, WP, CNP, CWP.

(1) mallocでN バイトを確保し，readを用いて読みだす．プログラム片は以下．�
1 char * a = malloc(N);

2 int fd = open(filename, O_RDONLY);

3 read(fd, a, N);

4 random_access(a, N, W);

ただし，random access(a,N,W)は，アドレス [a, a+N)から乱数でW 個のアドレスを選び，そ
こをアクセスする，以下のような関数とする．�

1 void random_access(char * a, long N, long W) {

2 char s = 0;

3 long i;

4 for (i = 0; i < W; i++) {

5 long k = 0以上N 未満の乱数;

6 s += a[k];

7 }

8 printf("%d\n", s);

9 }

(2) mmapでファイルをN バイト分，マップする．プログラム片は以下．�
1 int fd = open(filename, O_RDONLY);

2 char * a = mmap(0, N, PROT_READ, MAP_PRIVATE, fd, 0);

3 random_access(a, N, W);

以下では，C 個の子プロセスを起動し，子プロセスがファイル・配列をアクセスする．ただし，
random access中の乱数はプロセスごとに異なる列を返す．

(3) 親プロセスがmallocでN バイトを確保し，各子プロセスが readを用いて読みだす．�
1 char * a = malloc(N);

2 long i;

3 for (i = 0; i < C; i++) {

4 if (fork() == 0) {

5 int fd = open(filename, O_RDONLY);

5



6 read(fd, a, N);

7 random_access(a, N, W);

8 exit(0);

9 }

10 }

(4) 親プロセスがmalloc, readを行い，子プロセスが配列をアクセスする．�
1 char * a = malloc(N);

2 int fd = open(filename, O_RDONLY);

3 read(fd, a, N);

4 for (i = 0; i < C; i++) {

5 if (fork() == 0) {

6 random_access(a, N, W);

7 exit(0);

8 }

9 }

(5) 各子プロセスがmmapを行う．�
1 for (i = 0; i < C; i++) {

2 if (fork() == 0) {

3 int fd = open(filename, O_RDONLY);

4 char * a = mmap(0, N, PROT_READ, MAP_PRIVATE, fd, 0);

5 random_access(a, N, W);

6 exit(0);

7 }

8 }

6



3

次のような動作をする二つの関数を作りたい．

• track modifications(void * a, long n);

• is modified(void * p);

track modifications(a, n)を呼び出すと，[a, a+n)の範囲にあるのアドレス pへ，その呼び出し以降
書き込みが起きたかどうかを，is modified(p) を呼び出すことで知ることができる．より正確には，

• aおよび nはページサイズの倍数とする．

• pは a ≤ p < a+ nを満たす．

• 簡単のため track modificationsは一度だけ呼ばれるとする．

• これらの条件を満たす時，is modified(p)は，track modifications(a, n)の呼び出し以降，p

を含むページへの書き込みが起きていれば 1, 起きていなければ 0を返す．

(1) これらの関数を，OSカーネルで (つまり，必要とあらばOSを変更して)実現する方法の概要を記せ．

(2) これらの関数を，Unixに既に備わっているシステムコールを用いて，ユーザレベルで実現する方法
の概要を記せ．

(3) これらの関数の応用を一つ記せ．

7



平成 25 年度オペレーティングシステム期末試験 2015 年 2 月 10 日 実施 解答用紙

(1)

(2)

(3)

(4)

(5)

(6)

(7)

1

所属学科 学生証番号 氏名

(1)

(2)

(3)

(4)

(5)

2



(1)

(2)

(3)

3


