
平成24年度オペレーティングシステム期末試験

2013年 2月 5日

注意事項

• 問題は 3問, 8ページある.

• 1枚の解答用紙に 1問解答する (複数の問題の解答を 1枚に混ぜたり, 1問の解答を複
数の用紙にまたがって書いたりしない)こと

• 各解答用紙にはっきりと, どの問題に解答したのかを明記すること

• 問題文をよく読み, 解答として要求されている内容, 答え方の形式に従って答えること

• 提出時は, 3枚の答案を問題 1, 2, 3の順に重ねてホチキスでとめること

1

1

スレッドに公平に,かつ十分な頻度でCPU資源を割り当てるために,以下のようなスケジュー
ラを考えた. 簡単のため, CPUはひとつしかないものとする.

• 各スレッドに, 変数 v, lを管理する.

• スレッドが新しく生成された際, そのスレッド (tとする)は, それを生成したスレッド
(pとする)の v, l を引き継ぐ. つまり, tの v, lは pのそれと同じ値に初期化される.

• 1 ms ごとにタイマ割り込みをかける.

• (タイマ割り込みを含む)割り込み発生時には以下の処理をする.�
1 t = その時までCPU を使っていたスレッド;

2 c = 現在時刻;

3 t->v += c - t->l;

4 m = 実行可能なスレッドの中で最小のv を持つスレッド;

5 if (t->v > m->v + 10ms) {

6 m->l = c;

7 m に CPU を割り当てる;

8 } else {

9 t->l = c;

10 t に CPU を割り当てる;

11 }

• 現在CPUが割り当てられていたスレッドの実行が中断した際には, 上記と似た以下の
処理をする.�

1 t = その時までCPU を使っていたスレッド;

2 c = 現在時刻;

3 t->v += c - t->l;

4 if (実行可能なスレッドが存在する) {

5 m = 実行可能なスレッドの中で最小のv を持つスレッド;

6 m->l = c;

7 m に CPU を割り当てる;

8 } else {

9 次の割り込みまでCPU を停止させる
10 }

このスケジューラについて以下の問いに答えよ.

(1) 下線部, スレッドの中断とは, 何を契機としておきる事象か? 知る限りの例を 5つまで
述べよ.

(2) 常に実行可能なスレッドがN個, 長時間実行しており, それ以外に実行可能なスレッド
は存在しない状況を考える. 各スレッドは, どのくらいの間隔で, 1回にどのくらいの
時間, CPUの割り当てを受けることになるか? 「X msごとに 1回, Y msの割り当て
を受ける」という形式で答えよ. スケジューラの挙動に基づいて, その理由も説明せよ.

(3) 上記のN個のスレッドに加え,以下のように, 1文字入力を受け取っては, 5ms程度CPU
を消費する処理 process char を繰り返すスレッド Iが 1つ存在する状況を考える.�

1 while (1) {

2 c = getchar(); // 1文字入力
3 process_char(c); // 5ms CPU を消費
4 }

2

文字入力は 100msに一文字程度の頻度で発生するとする. 実際に文字入力が発生して
から, スレッド Iが process charを開始するまでの時間は最大でどのくらいか? また,
process charを完了するまでの時間は最大でどのくらいか? 理由も含めて述べよ. N
によって異なる場合, 適切に場合分けなどをして答えよ.

(4) 実は, 上記のスケジューラには, スレッドの挙動によっては, 一スレッドが長時間CPU
を専有できてしまうという致命的な欠陥がある. どのようなスレッドの挙動によってそ
の欠陥が現れるかを, スケジューラの挙動に基づいて具体的に示しながら, 説明せよ.

(5) 上記の欠陥の解決法について述べよ.

3

2

以下はスギちゃんという学生がひとりごとをつぶやきながらオペレーティングシステムの勉
強をしているときの記録である. よく読んで後の問いに答えよ.

スギちゃん: OSの試験が明日なんだぜぇ.

でもまだまったく勉強してないぜぇ. ワイルドだろぉ.

スギちゃん: ファイルの読み方について勉強するぜぇ. 練習問題を解くぜぇ.

問題: 「xを 0以上 264 − 1以下の整数, F を, 0以上 264 − 1以下の整数が多数, 昇順に格納さ
れたファイルとする.�

1 find_num F x

として起動すると, F 中に xが現れるか否かを答えるプログラム find numを書け. た
だし, 必要ならば二分探索を行うCライブラリ関数 bsearchを用いても良い (bsearchの
使い方は付録のマニュアルページ参照)」

スギちゃん: そんなの簡単だぜぇ.

まずファイルを開くには openシステムコールを使うぜぇ.

その後ファイルの中身を readシステムコールを使って読み込んで, bsearchを呼べばお
しまいだぜぇ.

こんな感じだぜぇ. ワイルドだろぉ.�
1 int main(int argc, char ** argv) {

2 char * F = argv[1]; /* 引数 1: ファイル名 */

3 long x = atol(argv[2]); /* 引数 2: 見つけたいx */

4 long sz = file_size(F); /* F のサイズ(バイト数) */

5 long N = sz / sizeof(long); /* F の要素数 */

6 int fd = open(F, O_RDONLY);

7 long * a = malloc(sz);

8 read_bytes(fd, a, sz);

9 void * found = bsearch(&x, a, N, sizeof(long), cmp_long);

10 close(fd);

11 if (found) {

12 printf("%ld は見つかったぜぇ\n", x);

13 } else {

14 printf("%ld はなかったぜぇ\n", x);

15 }

16 return 0;

17 }

注: ただし,

• 簡単のためエラー検査などは省略している
• 4行目の file size(F)は, Fのサイズをバイト単位で返す.

• 8行目の read bytes(fd, a, bytes)は,指定されたバイト数 (bytes)を, read関
数を使って読み込むもので, 以下で定義されている.�

1 void read_bytes(int fd, void * a, long bytes) {

2 long n_read = 0;

3 while (n_read < bytes) {

4 ssize_t m = read(fd, a + n_read, bytes - n_read);

5 if (m == -1) { perror("read"); exit(1); }

4

6 if (m == 0) { fprintf(stderr, "reached EOF\n"); exit(1); }

7 n_read += m;

8 }

9 }

• cmp longは要素 2つの大小を比較する関数であり, 以下で定義されている.�
1 int cmp_long(const void * a_, const void * b_) {

2 long a = *(long*)a_;

3 long b = *(long*)b_;

4 if (a < b) return -1;

5 if (a > b) return 1;

6 return 0;

7 }

スギちゃん: 走らせるぜぇ.

ここでスギちゃんは色々な大きさのデータに対して find numを呼び出した. 横軸に要
素数N , 縦軸に find num が実行を開始してから終了するまでの時間をグラフにしたと
ころ以下のような結果が得られた.

0

2

4

6

8

10

12

14

0 X

ti
m
e
(s
ec
)

N

測定方法の詳細は以下である.

• N を, 適当な数からはじめて少しずつ増やす.

• 各N に対し, N 要素からなるファイル F を生成する. 同じ xに対して 10回, コマ
ンド find num F xを続けて起動する.

• グラフの各点が一回の測定を表している

なお, このマシンは主記憶を 256MB, 2次記憶はハードディスクを 500GB搭載してお
り, find num以外にはほとんどプログラムは動作していないとする.

スギちゃん: おかしいぜぇ. 二分探索は計算量が (a) のはずだぜぇ. でも全然そう見え

ないぜぇ. しかもこのプログラムは, (b) N が Xを超えたあたりで, 急に挙動が変わる

ぜぇ(グラフ中の Xを参照).

そこへ多田という学生がやってきて, 唄い出した.

多田: ♪あたりまえー, あたりまえー, あたりまえコンピュータ♪

♪N がでかくて readを使うとー · · · 遅いよ♪

5

♪当たり前コンピュータ♪

(c) ♪N でかくてもmmap使うとー · · · 速いよ♪
♪当たり前コンピュータ♪

スギちゃん: うーん, 本当か? だったらやり方を知りたいぜぇ. . .

(1) (a) に当てはまる適切な式を答えよ. O(·)記法を用いて要素数N の式として書け.

(2) 下線部 (b)で, N が Xを超えたあたりで急に遅くなったのはなぜか? N が Xより十分
小さい時, およびそれより大きい時, コンピュータ内で何が起きているのかを具体的に
明らかにしながら説明せよ.

(3) Xの値はだいたいどのくらいの値だったと推測されるか? 根拠と共に述べよ.

(4) グラフの Xの左側は, 右側に比べるとほとんど 0 にしか見えないが, そこを拡大する
と, 実際にはグラフはそこでどのような形をしているか? グラフの形を書き, そうなる
理由も述べよ.

(5) 下線部 (c)で言われている, mmapを用いたプログラムへの書換えを実際に行なえ. 上
記の main関数を元に, 変更点を簡潔に書け. 元々の main関数と共通の場所をいちいち
書く必要はない. 参考としてmmapのAPIを以下に示す.

void *mmap(void *addr, size_t length, int prot, int flags,

int fd, off_t offset);

(6) mmapを用いたプログラムを使って同じ実験をして, グラフを書くとどのようになる
か? 問題文に現れた readを用いた場合のグラフとの違いがわかるよう, 両者を同一の
グラフに書き, 必要な説明を加えよ. 特に, Nが X より小さい領域でも, 両者の違いが
わかるよう, 適切に拡大して書くなどせよ. また, そうなる理由を述べよ. (1)と同様,
コンピュータ内で何が起きているのかを具体的に明らかにしながら説明せよ.

6

付録: bsearch マニュアルページ (抜粋)

NAME

bsearch - binary search of a sorted array

SYNOPSIS

#include <stdlib.h>

void *bsearch(const void *key, const void *base,

size_t nmemb, size_t size,

int (*compar)(const void *, const void *));

DESCRIPTION

The bsearch() function searches an array of nmemb objects, the initial member of

which is pointed to by base, for a member that matches the object pointed to by key.

The size of each member of the array is specified by size.

The contents of the array should be in ascending sorted order according to

the comparison function referenced by compar. The compar routine is expected

to have two arguments which point to the key object and to an array member,

in that order, and should return an integer less than, equal to, or greater

than zero if the key object is found, respectively, to be less than,

to match, or be greater than the array member.

RETURN VALUE

The bsearch() function returns a pointer to a matching member of the

array, or NULL if no match is found. If there are multiple elements

that match the key, the element returned is unspecified.

7

3

C言語でプログラムを書いて, それをコンパイルした実行可能ファイル a.out がある. この
プログラムを起動する際, 以下のような様々なステップを経てmain関数の実行開始までたど
り着く. 以下はUnixの場合に, このステップを示したものである.

1. forkシステムコールによりプロセスが生成される.

2. 子プロセスが execシステムコールを実行し, アドレス空間が初期化される.

3. a.out を子プロセスのアドレス空間に読み込む.

4. a.out がリンクしているライブラリが格納されたファイル (共有ライブラリファイル)をア
ドレス空間に読み込む.

5. main関数の実行を開始する.

Linux, BSD, SolarisなどのUnix系オペレーティングシステムは, 小さなプログラムが頻
繁に起動されても快適に動くように, 上記の処理を様々な工夫によって効率化している. そ
れらについて知る限りを述べよ. 説明するそれぞれの工夫について, 以下の項目が明らかに
なるよう整理して説明せよ.

(a) 上記のどこで行われている工夫か?

(b) その効果は何か? 高速化 (時間の短縮)か, メモリ消費量の節約, など.

(c) 具体的にどのような工夫が行われているか? そのような工夫のない, 単純な実装と対比
させながら説明せよ.

問題は以上である

8

