
平成 23年度オペレーティングシステム期末試験

2012年 2月 7日

注意事項

• 問題は 3問, 6ページある.

• 1枚の解答用紙に 1問解答する (複数の問題の解答を 1枚に混ぜたり, 1問の解答を複数の用紙にまたがっ

て書いたりしない)こと

• 各解答用紙にはっきりと, どの問題に回答したのかを明記すること

• 提出時は, 3枚の答案を問題 1, 2, 3の順に重ねてホチキスでとめること

1



1

現在の汎用 CPUには, メモリ管理ユニット (MMU)が搭載され, 様々な目的に使われている.

(1) CPUがメモリアクセス命令を発行した際, MMUが何を行うか述べよ.

(2) OSはプロセス間のメモリを分離している, すなわち, あるプロセスが他のプロセスのデータを読んだり書

いたりできないようにしている. このために OSがMMUをどのように利用しているかを述べよ.

(3) Unix OSが, プロセスを生成するシステムコール fork()を高速化するために, MMUをどのように利用して

いるかを述べよ.

(4) OSが, 多数のプログラムが利用するシステムライブラリのロードを高速化し, 使用メモリを節約するため

に, MMUをどのように利用しているかを述べよ.

2



2

以下の, 配列の 2分探索を行うプログラム binsearch(a, n, k)を考える. これは, キーの昇順に整列された

recordの配列 aと, 探索したいキーの値 k が与えられ, k をキーに持つレコードを探索するアルゴリズムであ

る. 簡単のため, record一要素の大きさは仮想記憶の一ページ分の大きさ (P とする)になっているとする. ま

た, a中の要素のキーはすべて異なる.

typedef struct record {
int key;

char data[P - sizeof(int)];

} record;

int binsearch(record * a, int n, int k) {
int l = 0;

int r = n;

while (l + 1 < r) {
int c = (l + r) / 2;

if (a[c].key <= k) {
l = c;

} else {
r = c;

}
}
if (a[l].key <= k) {
return l;

} else {
return -1;

}
}

正確には, binsearch(a, n, k)は以下の値を返す.

binsearch(a, n, k) =


−1 (k < a[0].keyのとき)

n− 1 (k ≥ a[n− 1].keyのとき)

a[x].key ≤ k < a[x+ 1].keyを満たす x (上記以外のとき)

(1) binsearch(a, n, k)一回の実行において, a中のいくつの要素がアクセスされるか?

今, 0以上M 未満の相異なる整数を n(< M)個, 一様な確率で抽出し, それらをキーとして aを作る. その配

列 aをファイル Aに格納する. 0以上M 未満のキーをひとつ一様な確率で選び, そのキーを A中から探索す

る以下のプログラムを考える.

int binsearch file(int n) {
int fd = open(A, O RDONLY);

int sz = n * sizeof(record);

record * R = malloc(sz);

read(fd, R, sz);

3



k = 0以上M 未満の一様乱数;

return binsearch(R, n, k);

}

ただし簡単のため, エラーチェックなどは省略している.

(2) 横軸を配列 aの要素数 n, 縦軸を binsearch file(n)一回の実行にかかる時間としたグラフを描け. また,

なぜそうなるのかの簡単な説明を加えよ. ただし実行前, ファイルキャッシュは空の状態であるとする. 横軸は

は, aの大きさ (バイト数; すなわち nP )が主記憶より大きくなるところまで描くこと.

(3) 上記のプログラムでmalloc/readをmmapに置き換えた, 以下のプログラムに対して, (2)と同様のグラフ

を描け. (2)のグラフと対比できるよう, 同じグラフ中に書き入れよ.

int binsearch file mmap(int n) {
int fd = open(A, O RDONLY);

int sz = n * sizeof(record);

record * R = mmap(0, sz, PROT READ, MAP PRIVATE, fd, 0);

k = 0以上M 未満の一様乱数;

return binsearch(R, n, k);

}

4



3

スレッド間でデータ (簡単のため，int型の整数とする) を受け渡しするキュー (Queue)を操作する二つの手

続き getと putがあるとする．

• get(q)はキュー qからデータを一つ取り出す．もちろん空のキューからデータを取り出すことはできな

い．その場合，データが putによって一つ挿入されるまで待つ.

• put(q, x)はキュー qに一つのデータ xを挿入する．キューには一定の容量 cがあり，満杯のキューに

データを挿入することはできない．つまり，qにデータがすでに c個格納されていれば，一つのデータが

getによって取り出されるまで待つ.

簡単のために c = 1とした上で，以下の構造体や関数定義の · · · 部分を補う形で，(容量 1の)キューの実現

方法を考える．ただし, 実現に当たっては任意個のスレッドが, 任意のタイミングで put/get を呼び出すことが

できる, 汎用的な実現方法を考える.

typedef struct

{
int n; /* 格納されているデータ数．0または 1 */

int data; /* n=1のとき，格納されているデータ */

· · ·
} * Queue;

void put(Queue q, int x) {
· · ·

}

int get(Queue q) {
· · ·

}

以下の問いに答えよ．

(1) 大島さんは, 以下のようにすれば良いと考えた.

typedef struct

{
int n; /* 格納されているデータ数．0または 1 */

int data; /* n=1のとき，格納されているデータ */

} * Queue;

void put(Queue q, int x) {
while (q->n != 0) ;

q->data = x;

q->n++;

}

5



int get(Queue q) {
while (q->n == 0) ;

q->n--;

return q->data;

}

このプログラムの問題点について, 以下が当てはまっているか否かを答えよ. 当てはまっている場合, 問題と

なる具体的な実行例を示せ.

(a) 値が正しく受け渡されないことがある

(b) 値が正しく受け渡されたとしても, 性能が著しく低いことがある

(2) そこへ黒沢さんがやってきて正しいプログラムを教えてくれた. それを書け. スレッドの同期のための標準

的な API (排他制御，条件変数など)を適宜用いよ．プログラムは C言語風の擬似コードで書くことを想定し

ているが，厳密な文法や APIの用法 (引数の数や順番など)にはこだわらないので，適宜文章で説明を補え．

問題は以上である

6


