
平成 22年度オペレーティングシステム期末試験: 解答と講評

2011年 2月 8日

注意事項

• 問題は 3問, 8ページある.

• 1枚の解答用紙に 1問解答する (複数の問題の解答を 1枚に混ぜたり, 1問の解答を複数の用紙にまたがっ

て書いたりしない)こと

• 各解答用紙にはっきりと, どの問題に回答したのかを明記すること

1



1

次の文章を読んで, 後の (1)～(8)の問いに答えよ.

美希: うわー, OSの試験が明日だ～～!

池上彰: ちゃんと勉強してますか?

美希: いいところへ来ました. 教えてください. OSの授業で先生がmmapについて力説してたんだけど, 正直

なんのことかわかりませんでした.

池上彰: どんな風に力説していたんですか?

美希: なんでも, OSの真髄である仮想記憶の仕組みを学んだ人には, mmapはとても自然に思えるとかなんと

か. . .でも所詮はファイルを読むためにあるんだから, 「読めりゃええやん, ファイルなんやし」って思う

んです.

池上彰: いい質問ですね! それではまず, mmapというのがどんなシステムコールなのか, おさらいしてみま

しょう.

美希: はい. じゃあマニュアル (5ページ参照)を見て, と. 引数が色々あってちょとややこしいですけど. . .

池上彰: そうですね. じゃあ例題として, fooというファイルに, 文字 A が何文字含まれているかを表示するプ

ログラムを, mmapを使って書いてみてください. 簡単のため, ファイルのサイズはわかっていて, 10000

バイトとしておきましょう.

美希: はい.

美希: . . . (しばらくして) ととのいました!

int main() {
int fd; char * a;

(1)

int i; int c = 0;

for (i = 0; i < 10000; i++) {
if (a[i] == ’A’) c++;

}
printf(”foo has %d ’A’s\n”, c);

}

池上彰: どれどれ, そうですね. よく出来ました.

美希: でも,何が嬉しいのかわかりません. たしかに配列aを読み書きするだけでファイルを読み書きで来ています

が,同じことは, mmapなんか使わなくても, (2)普通にメモリをmallocで割り当てて, readで読めばできる

のではないでしょうか?

池上彰: いい質問ですね! それに答えるためにまず, mmapの仕組みについておさらいしてみましょう. まず,

mmapシステムコールを呼んだとき, OSはその中でどんなことをしていると思いますか?

美希: んー, その時にファイルを読んできているのではないでしょうか?

池上彰: 違いますねぇ.

2



美希: ええっと,あ,そういえば授業でそんなことを力説していたような. . .あそうだ, (3) .

どうでしょうか?

池上彰: 正解! じゃあ, それでなぜ, 配列 aにアクセスするだけで, 結果的にファイルが読めるのでしょうか?

美希: 確かに. . .あ, だんだん思い出してきました. (4) . どうでしょうか?

池上彰: 正解!

美希: なるほど. . .でも先生, これでOSが, 何かうまいことやっているというのはわかりましたけど, この例で

は結局ファイルを全部読むわけですから, やっぱりmallocと readを使っても同じじゃないという気がす

るのですが. . .

池上彰: いい質問ですね! 確かに美希君が言うように,遅かれ早かれ全部のファイルを読むようなアプリケーショ

ンでは, 大差がないことが多いです. mmapが一番有効なのは, ファイルの (5)

ようなプログラムです.

美希: 確かに, ファイルの (5) ようなプログラムでは, readですべてを読み出すのは

無駄ですし, かといって lseekを使って必要なところだけを読むのでは, プログラムがややこしくなりそ

うですね.

池上彰: その通り. 実際には中身がディスクから読まれているわけではないのに, あたかもファイルがすべて読

み込まれているような状態を作り出している, というところが味噌ですね.

美希: ファイルの (5) ようなプログラムって, 実際の応用プログラムとしてはどんな

ものがあるんですか?

池上彰: いい質問ですね! どんなのがあると思いますか?

美希: そうですねぇ. . . (6) なんてどうでしょうか?

池上彰: そうですね. ところで先程ファイルの (5) ようなプログラムに対してmmap

が有効だと言いましたが, それ以外にも, 有効な場面があります. それは, 多数のプロセスが同じファイル

を読もうとしたときに顕著に表れるのですが, わかりますか?

美希: えーとえーと,

池上彰: じゃあヒントを出しましょう. 先程の, mmapの仕組みを考えてみてください. そして同じファイルを

たくさんのプロセスが readを使って読んだとき, mmapを使って読んだとき, を比べてみてください.

美希: あ, そうか. (7) .

池上彰: 素晴らしい!

美希: でも, 多数のプロセスが同じファイルを読むなんてことが, そんなに頻繁にあるんですか?

池上彰: いい質問ですね! もちろんWebサーバみたいに, たくさんのプロセスが, リクエストで指定されたファ

イルを読む, なんていう場合, そういう状況が発生し得ますね. それ以外に, 普通のデスクトップやノー

ト PCでも頻繁に読まれているファイルとして, (8) がありますね. このファイルは, 自分

では読んでいるつもりはないかもしれませんけどね.

美希: なるほど. コンピュータが効率的に動くのは, そうやってOSがメモリを効率的に管理しているからなん

ですね.

池上彰: そうですね. そしてそれを支えているのが仮想記憶ですね. 元々は, プロセス間のメモリの分離を目的

として発明されたものですが, 結果的には驚くほど豊かな使い道があったわけですね.

3



以下の問いに答えよ.

(1) (1) には, fdと aに適切な値を代入し, aを通じてファイル fooの中身が読み出せるようにす

る一～数行のコードが入る. それを書け.

(2) 下線部 (2)で主張している方法は具体的にはどのようなものか? (1) に当てはまるコードと

して書け.

(3) (3) には, mmapシステムコールが呼び出されたときに OSが行うことを説明する文章が入

る. 適切な文章を書け.

(4) (4) には, 上記のプログラムの for文によって, 結果的にファイル fooの中身が読める理由を

説明する文章が入る. 適切な文章を書け.

(5) (5) に当てはまる, mmapが有効となるアクセスパターンを簡潔に述べよ.

(6) (6) に当てはまる具体的なアプリケーションの例を, 自分なりに考えて述べよ.

(7) (7) には, 多数のプロセスが同じファイルを読む際, mmapを用いた方法が, readを用いた方

法に比べてどのような点が優れているのか, およびその理由が書かれている. 適切な文章を書け.

(8) (8) に当てはまる適切な言葉を書け.

4



参考: mmapシステムコールマニュアル (抜粋)

MMAP(2) Linux Programmer’s Manual MMAP(2)

NAME

mmap, munmap - map or unmap files or devices into memory

SYNOPSIS

#include <sys/mman.h>

void *mmap(void *addr, size_t length, int prot, int flags,

int fd, off_t offset);

DESCRIPTION

... <中略> ...

If addr is NULL, then the kernel chooses the address at which to create

the mapping; this is the most portable method of creating a new map‐
ping. If addr is not NULL, then the kernel takes it as a hint about

where to place the mapping; on Linux, the mapping will be created at a

nearby page boundary. The address of the new mapping is returned as

the result of the call.

... <中略> ...

The prot argument describes the desired memory protection of the map‐
ping (and must not conflict with the open mode of the file). It is

either PROT_NONE or the bitwise OR of one or more of the following

flags:

PROT_EXEC Pages may be executed.

PROT_READ Pages may be read.

PROT_WRITE Pages may be written.

PROT_NONE Pages may not be accessed.

The flags argument determines whether updates to the mapping are visi‐
ble to other processes mapping the same region, and whether updates are

carried through to the underlying file. This behavior is determined by

including exactly one of the following values in flags:

MAP_SHARED Share this mapping. Updates to the mapping are visible to

other processes that map this file, and are carried through

to the underlying file. The file may not actually be

updated until msync(2) or munmap() is called.

MAP_PRIVATE

Create a private copy-on-write mapping. Updates to the map‐
ping are not visible to other processes mapping the same

file, and are not carried through to the underlying file.

It is unspecified whether changes made to the file after the

mmap() call are visible in the mapped region.

Both of these flags are described in POSIX.1-2001.

In addition, zero or more of the following values can be ORed in flags:

... <中略> ...

RETURN VALUE

On success, mmap() returns a pointer to the mapped area. On error, the

value MAP_FAILED (that is, (void *) -1) is returned, and errno is set

appropriately.

5



2

N 個のスレッドが実行しているとする. それらのスレッド間の「バリア同期」とは, 「それらのスレッドす

べてがある地点に到達するまで待つ」というタイプの同期である. ここではそれがどのように実現できるかを

検討する.

具体的には, N 個のスレッドが barrier()という関数を呼び出すことで, バリア同期が実現されることを目指

す. つまり barrier()関数は, N 個すべてのスレッドがそれを呼出したとき, およびその時に限り, リターンす

る. 各スレッドには 0から N − 1の一意な IDがふられており, thread id()という関数でそれが得られるもの

とする.

以下の (1)～(4)の問いに答えよ. (1)～(3) までは, barrier()関数は各スレッドが一度だけ呼ぶ (複数回呼ぶこ

とはない)ものと仮定して良い.

(1) 「barrier()を呼出したスレッドの個数を数える大域変数 cを用意し, それがN になるまで待つ」という方

針で以下のようなコードを書いた.

volatile int c = 0; /* グローバル変数 */

void barrier() {
c++;

while (c < N) /* 何もしない */ ;

}

このコードで, 以下の (a), (b), (c)3つの問題が生じ得るかそれとも生じ得ないか, それぞれ答えよ. 生じ得る

場合, それが生ずる理由を, 実行例を具体的に示しながら述べよ.

(a) まだ barrier()を呼んでいないスレッドがいるにもかかわらず, barrier()がリターンしてしまう

(b) 全員が barrier()を呼んだにもかかわらず, 決して barrier()からリターンしない

(c) 運よく (b)の問題がおきなかったとしても, スレッド数が多いと非常に性能が悪くなる

(2) 「それぞれのスレッドが barrier()を呼出したか否かを記録する配列を作る」という方針で以下のコードを

書いた.

volatile int a[N ] = { 0, 0, . . . , 0 }; /* グローバル配列 */

void barrier() {
int i;

a[thread id()] = 1;

for (i = 0; i < N ; i++) {
while (a[i] == 0) /* 何もしない */ ;

}
}

(a), (b), (c)それぞれの問題がおきるかどうか, (1)と同様に答えよ.

(3) どちらかのコードを元に, (a), (b), (c)どの問題もおきないよう, 適宜スレッドプログラミングの APIを用

いてプログラムを修正せよ. 前述したとおり, barrier()は各スレッドがプログラム中でただ一度だけ呼ぶもの

と仮定してよい.

(4) それらのスレッドが複数回 barrier()を呼んでも良いように, barrier()関数を拡張することを考える. そこで

「同期が成立した後, 次の呼び出しに備えて aの要素を 0 にする」という方針で以下のようなコードを書いた.

6



volatile int a[N ] = { 0, 0, . . . , 0 }; /* グローバル配列 */

void barrier() {
int i;

a[thread id()] = 1;

for (i = 0; i < N ; i++) {
while (a[i] == 0);

}
a[thread id()] = 0;

}

同様に (a), (b), (c)それぞれの問題がおきるかどうか答えよ.

7



3

OSが果たしている役割でもっとも重要なもののひとつは, 複数のプログラムを安全に一つのコンピュータ上

で実行することである. その仕組みについて以下の (1), (2)の問いに答えよ.

(1) ファイル入出力, ネットワーク通信など多くの処理が, OSに対して「システムコール」を発行することで

のみ実行可能になっている. そもそも通常のユーザプログラムがディスクから直接データを読んだり, ネット

ワーク機器を直接操作して通信をしたりすることができないようになっていて, システムコールを呼び出すと

それが可能になっている仕組みを述べよ. 以下が明確になるように記述せよ

• CPUや, 場合によっては周辺ハードウェアが提供している機能

• ユーザプログラムを実行するのと OSのプログラムを実行するのとで, 何が違うのか? なぜ OSがディス

クやネットワークへのアクセスを実現しているコードを, ユーザプログラムが真似して実行しても, ユー

ザプログラムはディスクやネットワークへ直接アクセスできないのか?

• ユーザプログラムが「システムコール」を呼び出すと何が起きるのか? 普通の関数呼出しと何が違うのか?

(2) 一つのスレッドが CPUを独占しようとしても, それができないようになっている仕組みを述べよ. 以下が

明確になるように記述せよ.

• CPUや, 場合によっては周辺ハードウェアが提供している機能

• OSはそれをどのように利用しているか? 例えば無限ループに陥ったプログラムがあっても, 他のプログ

ラムが実行できるための仕組みはどのようなものか?

• より一般に, 多数のスレッドに公平に CPUが割り当てられるようにする仕組みとしては, 例えばどのよ

うな仕組みが用いられているか?

問題は以上である

8



1 : 解答

(1) 5点

解答例:

fd = open("foo", O_RDONLY);

a = mmap(NULL, 10000, PROT_READ, MAP_PRIVATE, fd, 0);

コメント:

• MAP PRIVATEは MAP SHAREDでも可.

• fd, aそれぞれについて正しく書けていれば 2.5点ずつ.

• O RDONLYなど細かい定数名についてはそれらしく書けていれば不問.

よくある間違いに openを fopenとしたものがある. やや細かい話にはなるが, fopenを呼んだ結果かえって

くるものは, FILEという構造体へのポインタで, mmapなどへ渡せるもの (ファイルディスクリプタ)ではない

ので, 実践的にはその違いは重要.

(2) 7.5点

解答例:

a = malloc(10000)

fd = open("foo", O_RDONLY);

read(fd, a, 10000);

コメント:

• a, fd, および readの呼び出しそれぞれについて正しく書けていれば 2.5点ずつ

(3) 5点

解答例: . . .あ,そうだ,プロセスのアドレス空間から, 10000バイト分の,連続して開いている論理アドレスを探

してきて, その範囲がファイル”foo”にマップされている事を, OSが管理するデータ構造, アドレス空間記述表

とか言ったかな, に記録する.

コメント: 論理アドレス空間上で, 10000バイト分の領域を, 「割り当てられた」と記録しておく「だけ」と

いうところがポイントで, その時に実際に物理メモリを探してくるわけではない (demandページング).

なお, それが可能なのは, 実際にその割り当てられたところにアクセスがあったときにページフォルトが発生

して, それを OSが捕まえてその時になって (こっそり), 実際に物理メモリを割り当てることができるからで

ある. ページフォルトが発生する理由は, ページテーブルに, 割り当てた範囲のページ対応する物理アドレスが

「不在」となっているからである.

(4) 2.5点

実際にその範囲のアドレスにプロセスがアクセスすると, ページフォルトが発生して, その時に OSが物理

ページを割り当て, データをファイルから持ってくるんだったけな.

9



コメント: ページフォルトがおきてそれをOSが処理しているというストーリが明確に分かっているかどうか

がポイントです.

(5) 2.5点

一部を, ランダムにアクセスする

コメント: 「一部をアクセする」という解答が多かったが, やはり後者の「ランダムに」(単純に逐次的ではな

く)アクセスするという点も重要である. 例えば 1000000バイトあるファイルの, 3000バイト目から, 5000バ

イト目を逐次的にアクセスするのであれば, 3000バイト目に seekして 2000バイト読めば良いだけの話である.

あちらこちらから少しずつ読む (ランダム)という挙動が重要である.

(6) 2.5点

辞書, データベースなど.

コメント: もちろん解答は色々あり得る. 適切な説明がなされていれば名詞は問わない. 重要なことは,

• 全データは大きく, 一回アプリケーションが起動するたびに全データをファイルから読むのはコストが大

きい

• アプリケーション一回の操作ではわずかのデータしかアクセスしない

ようなアプリケーションを探すことである. 辞書であれば, 通常ハッシュ表や木構造などを用いて単語を高速に

検索できるようになっているが, それらはデータ構造の僅かな部分を読むだけで, 目的の単語を検索する仕組み

である. 従ってひとつの単語をルックアップするたびに辞書全体をファイルから読むのは非常に効率が悪い. そ

して目的の単語にたどり着くまでのアクセスはランダム性が高い. 木構造の子供をたどっていったり, ハッシュ

値に基づいてアクセスする場所が決まるなど, 単純な逐次アクセスではない.

なお, 非常に多かった答えに「動画のプレイヤー」というものがあった. こう解答した人が何を意図してこう

書いたのかは正直分からないが, 田浦が何か見落としをしているのでない限り動画プレイヤーが上記のような

性質を持っているとは考えにくい.

確かに一部だけを再生する場合に,「ファイル全体を読まない」という挙動にはなるが, その場合でも動画を

再生している間のアクセスというのは, 逐次的である. もしかして, 普段動画プレイヤーにお世話になってばか

りいるので, それしか思い浮かばなかったとか (笑... えない)????

(7) 2.5点

同じファイルをたくさんのプロセスが読んだ場合, mmapを使った場合はそれらのプロセスが物理メモリを

共有することができるのに対し, readでは, データを読み込む領域はプロセス毎に別々で, それぞれに別の物理

メモリが必要になる, だからmmapの方が必要な物理メモリがうんと小さくなる, でどうでしょうか?

コメント: なぜこのような違いが出てくるのか—単にOSが「たまたま」mmap の実装をそうしており, read

の方の実装をサボっているだけではないのか— を少し突っ込んで考えてみよう.

たくさんのプロセスがmmapを使った, つまり以下のような呼出しを行った場合,

fd = open("foo", O_RDONLY);

a = mmap(NULL, 10000, PROT_READ, MAP_PRIVATE, fd, 0);

OSにとっては [a, a+10000)というアドレスの範囲は, どのプロセスでも同じ中身を持つということが明らか

である (書き込みがおきるまでは). それはmmapという APIの「仕様」である. だから OSにとっては, それ

らに同じ物理ページを割り当てる—ページテーブルを使ってそれぞれのプロセスにおける [a, a+10000)のアド

レス範囲を同じ物理メモリにマップする— のはごく自然にできることである.

一方, mallocと readを使った場合,

10



a = malloc(10000)

fd = open("foo", O_RDONLY);

read(fd, a, 10000);

aの中身がそれらのプロセスの間で一緒になるのは, それらが「あとになって」同じファイルの同じ領域を読

み込んでいるからたまたまそうなるのであって, OSがメモリ割り当て要求 (malloc) を見たときにはそんな事

(これからその領域に同じ内容が書かれる事)はわかるはずがない. それらに同じ物理ページを割り当てようと

思ったら, OSとしては, readが行われた際 (もっと一般にはメモリ領域が書きかわった際)に, たまたま同じ内

容を持つページがシステムのどこかにないかを見つけてくる, ということになる. この探索をオーバーヘッド

を少なくやるのは困難であろう. 実は, そのオーバーヘッドをどうにか少なくできたとしても, さらに困難 (と

いうよりも現在のハードウェアでは不可能)な理由がある. それは, 論理アドレスから物理アドレスへの変換は

ページを単位としてしか行えないということである. そして, 各プロセスで, aというアドレスがページ内のど

のオフセットに位置するかわからないので, それらをすべて同じ物理アドレスに変換するようにページテーブ

ルをセットするのは不可能なのである.

例を使って具体的に説明する. たとえばあるプロセス P では a = 0x10100 (16進表記), 別のあるプロセスQ

では a = 0x20300 (16進表記) だったとする. それぞれ, a = 0x10000というページ内でオフセット 100, それぞ

れ, a = 0x20000というページ内でオフセット 300 である. P の 0x10000とQの 0x20000を同じ物理ページ—

たとえば 0x40000—にマップしても, 結果として P の aは, 0x40100に, Qの aは 0x40300にマップされること

になるので, 目的は達せられないのである.

(8) 2.5点

共有ライブラリ

11



2 : 解答

(1) (a)は 2.5点. (b)(c)は実行例を含めて各 5点 (計 12.5点).

• (a) おこり得ない.

• (b) おこり得る. 実行例.

(1) スレッド Pが cから値 (xとする)を読む;

(2) スレッド Qが cから値 (同じ x)を読む

(3) スレッド Pが cに x+ 1を書く;

(4) スレッド Qが cに x+ 1を書く;

結果として cはいつまでたってもN にならない.

• (c) おこり得る. cが N になるまでの間, while (c < N); といういわゆる「頻忙待機」をしており, 最後

のスレッドになかなか実行の機会が与えられない. 実行例:

1 CPUしかないシステムで実行しているとし, スレッド 0, . . . , N − 2までがこのループを実行している

とすると,

(1) スレッド 0が自分のタイムスライスを使い果たすまで実行する;

(2) スレッド 1が自分のタイムスライスを使い果たすまで実行する;

(3) . . .

(4) スレッドN − 2が自分のタイムスライスを使い果たすまで実行する;

という具合に, 最後のスレッドが c++を実行するまでの間に, タイムスライス×(N − 2)分だけの時間が

必要になる.

(2) (a)(b)は 2.5点. (c)は実行例を含めて各 5点 (計 10点).

• (a) おこり得ない

• (b) おこり得る

• (c) おこり得る. おきる状況は (1)の場合と全く同じである.

(3) 2.5点

pthread_mutex_lock(&m);

int d = c;

c = d + 1;

while (c < N) pthread_cond_wait(&co, &m);

if (d == N - 1) pthread_cond_broadcast(&co);

pthread_mutex_unlock(&m);

(4) 実行例を含めて各 6点 (計 18点).

• (a) おこり得る. 実行例は以下の通り.

12



(1) スレッド Pが barrier()内のループを抜け, a[P] = 0;を実行する.

(2) (他のスレッドが一切動く前に)スレッド Pが再び次の barrier()を呼び, a[P] = 1; を実行する.

(3) (他のスレッドが一切動く前に)スレッド Pが for文に入り, すぐに抜ける

• (b) おこり得る. 実行例は以下の通り.

(1) a[thread id()] = 1; を実行した最後のスレッドをPとする. このスレッドPが a[P] = 1; を実行する.

(2) スレッド Qが for文を抜け, a[Q] = 0;を実行する.

(3) スレッド Pが for文に入り, aのチェックを始める.

すでに a[Q] = 0が実行されているため, Pは for文 (正確には, while (a[Q] == 0) ; )を抜けることが

できない.

• (c) おこり得る. 実行例は (1)(2)と同じ.

コメント: ご覧の通り,「競合状態」というのは非常にやっかいな問題である. 初めての場合, 細かいパズル的

な思考を要求されるが, 実践的には, まともに同期を使わずに書かれたプログラムはきっと何か競合状態がある

という「感覚」になれることかもしれない.

13



3 : 解答

(1) 15点

解答例: CPUが提供する機能として, 特権モードとユーザモードという二つ (以上)の, 状態の区別がある. 一

部の命令 (特権命令)は, ユーザモードでは実行できず, ネットワークなど外部との入出力を行う命令 (IO命令)

は, 特権命令である. OSは通常のプログラム (OSカーネルやデバイスドライバ以外のプログラム)を, ユーザ

モードで実行するため, 通常のプログラムが OSの真似をして IO 命令を発行しても実行できない.

CPUは, ユーザモードから特権モードへ移行するとともに, 割り込みベクタで指定されているアドレスへジャ

ンプする命令 (「トラップ命令」)を提供している. システムコールはトラップ命令を用いて OS内のシステム

コール処理を開始するアドレスへ制御を移行する. それにより, 特権命令が発行可能になるとともに, ユーザが

勝手なアドレスのコードを特権モードで実行することはできなくなっている.

コメント 以下が明確になっているか否かをチェックして, それぞれに 3点程度ずつ与えている.

• CPUは特権モードとユーザモードを提供している

• ネットワーク通信など, 外部とのやりとりを実現する命令 (IO命令)はユーザモードでは実行できない

• ユーザプログラムはユーザモードで実行されている

• CPUはトラップ命令(ユーザモードから特権モードへ移行すると共に特定の場所へジャンプする命令) を

提供する

• システムコールはトラップ命令を発行することで呼び出される

(2) 12点

解答例: CPUは「割り込み」を提供する. これは, 外部からの信号で, CPUに強制的に処理を特定場所に移行

させる仕組みである. 周辺機器として, タイマコントローラがあり, CPUに定期的, ないし指定された時間後に

割り込みを発生させる. CPUはタイマコントローラを用いて割り込みが定期的に発生するようにし, かつ割り

込み時にスレッドの切り替えを行う必要があれば行う. これによりユーザプログラムが無限ループに陥っても,

定期的にOSに制御が戻り, かつその機会に他のユーザプログラムを実行することが可能となっている. OSは,

CPUをスレッドに公平に割り当てるするために, 例えば以下のようなことをする.

タイムスライス (ひとつのスレッドが連続して走って良い時間) を設定し, OSが制御を得た際 (割り込み時

など)に, 現在実行中のスレッドが走り出してからタイムスライス以上の時間が経過していないかどうか検査す

る. 経過していればそのスレッドから制御を奪い, 次のスレッドに CPUを割り当てる. そして, 実行可能なス

レッドにかわりばんこ (ラウンドロビン) に CPUを割り当てる.

コメント: 以下が明確になっているかどうかをチェックし, 各項目に 3点ずつ程度.

• CPUが割り込み機能を提供している

• 周辺機器 (タイマ)により, 定期的にタイマ割り込みが発生するようにする

• OSは, 割り込み時に, 場合によってはコンテクストスイッチする

• OSは, 各スレッドにタイムスライスを割りあてるなどして, 公平性を保証している

14



全体に対する補足

• 試験自身の素点 60点以上が可, などの絶対的な線引きはしていないので, 自分の素点自体はあまり気にし

なくて良い.

• 実際には点数の分布を見た上で線引きをして, 不可になりそうな答案に改めて目を通し,「不可やむなし」

と確認した上で, 不可は不可になっている.

• 上述した通りの細分化した配点をしていて, 集計は Excelでおこなっている.

15


