
平成 19年度オペレーティングシステム期末試験
2008年 2月 4日

問題は 3問，6ページある．

1

大きさ N バイトのファイル F を読み込み, そのチェックサムを計算するプログラムを考える. チェックサム
の計算方法は色々あるが, ここでは単純にデータの各バイトを整数とみなしてその和をとることとする. これを
行うプログラムの一例を書けば以下のようになる.

1: char checksum of file() {
2: int fd = open(F , O RDONLY);
3: char s = 0;
4: int i;
5: char * a = malloc(N);
6: read(fd, a, N);
7: for (i = 0; i < N ; i++) {
8: s += a[i];
9: }
10: return s;
11: }

このプログラムを 20回連続して繰り返し実行 (同じファイル F を 20回読む)して, 一回あたりの実行時間
(checksum of fileの開始から終了まで) を測定する. 一回あたりの実行時間は繰り返し 20回実行したうちの最
後の 10回の実行時間の平均をとる. プログラムは PCやサーバ用の, 現代的な OS (UnixやWindows)上で実
行し, このプロセス以外に測定を邪魔するようなアクティブに実行しているプロセスはないものとする.

(1) 様々なN に対して実行時間はどのようにかわるか? 横軸にN , 縦軸に測定された実行時間をとったグラフ
を書け.

(2) なぜ実行時間がそのように振る舞うのかを説明せよ. 特に, グラフの重要な量 (傾きや, 形が不連続に変化
する点など)について, それがコンピュータのどのようなパラメータで決まるのかに言及せよ.

(3)ファイルを読むのにmallocと readを用いる代わりにファイルマッピングを用いるとどのようになるか. (1),
(2)と同様の問いに答えよ. グラフは mallocと readを用いた場合との違いが分かるように, (1)の結果に重ね
て書け. そしてその違いはなぜ生ずるのかについて説明せよ. Unixでは, プログラムの 5, 6行目を以下に入れ
替えることで, ファイルマッピングを用いてファイルを読むことができる.

char * a = mmap(0, N , PROT READ, MAP PRIVATE, fd, 0);

1



2

1つのスレッド c (以下の関数 Cを実行)が, 二つのスレッド p (以下の関数 Pを実行), q (以下の関数Qを実
行)のどちらかからデータを受け取り, 受け取ったデータを用いて計算を行うプログラムを書きたい. そのため
に共有メモリ Xに pが, Yに qがデータを書き込み, cが Xや Yを読むことにする. cは p, qのどちらかでも

データを書き込んだらそれを読み込んで実行を始めることとする.
簡単のため X, Yは int型で, 3スレッドが実行を開始する前, X, Yには 0が入っており, p, qが書き込む値

は決して 0ではないとする. 全体として以下のようなプログラムになり, 関数 P, Q, Cが別々のスレッドによっ
て実行される.

volatile int X = 0;
volatile int Y = 0;
P(arg) {

. . .
X = . . . ;

}
Q(arg) {

. . .
Y = . . . ;

}
C(arg) {

int t;
(∗) Xまたは Yが 0でなくなるまで待ちそれを tに読み込む;
tに読み込んだ値を使って計算をする;

}

(1) 「(∗)Xまたは Yが 0でなくなるまで待ちそれを tに読み込む」部分は単純には以下のように実現できる.

/* Xまたは Yが 0でなくなるまで待ちそれを tに読み込む; . . . (∗) */
int t;
while (1) {

t = X;
if (t != 0) break;
t = Y;
if (t != 0) break;

}

これは一応正しく動くものの問題があり, 通常は推奨されない. どのような問題か.

(2) 上で述べた問題を解決するためにOSやスレッドライブラリが提供するセマフォを使う方法がある. この方
法にしたがって上記のプログラムを修正せよ.

(3) セマフォを用いずに条件変数と排他制御を用いて同じ事を行え (実質的には条件変数と排他制御でセマフォ
を実装できることを示している).
付録として, (2), (3)に関連する APIのマニュアルページ (抜粋)をつける.

2



セマフォ関係:

SYNOPSIS

int sem_init(sem_t *sem, int pshared, unsigned int value);

int sem_wait(sem_t *sem);

int sem_post(sem_t *sem);

DESCRIPTION

sem_init() initializes the unnamed semaphore at the address pointed to by sem.

The value argument specifies the initial value for the semaphore.

The pshared argument indicates whether this semaphore is to be shared between

the threads of a process, or between processes.

If pshared has the value 0, then the semaphore is shared between the threads of

a process, and should be located at some address that is visible to all threads

(e.g., a global variable, or a variable allocated dynamically on the heap).

sem_wait() decrements (locks) the semaphore pointed to by sem. If the

semaphore’s value is greater than zero, then the decrement proceeds, and

the function returns, immediately. If the semaphore currently has the

value zero, then the call blocks until either it becomes possible to

perform the decrement (i.e., the semaphore value rises above zero), or a

signal handler interrupts the call.

sem_post() increments (unlocks) the semaphore pointed to by sem. If the

semaphore’s value consequently becomes greater than zero, then another

process or thread blocked in a sem_wait(3) call will be woken up and

proceed to lock the semaphore.

条件変数関係:

SYNOPSIS

int pthread_cond_init(pthread_cond_t *restrict cond,

const pthread_condattr_t *restrict attr);

int pthread_cond_broadcast(pthread_cond_t *cond);

int pthread_cond_wait(pthread_cond_t *restrict cond,

pthread_mutex_t *restrict mutex);

DESCRIPTION

The pthread_cond_init() function shall initialize the condition variable

referenced by cond with attributes referenced by attr. If attr is NULL,

the default condition variable attributes shall be used; the effect is

the same as passing the address of a default condition variable

attributes object. Upon successful initialization, the state of the

condition variable shall become initialized.

The pthread_cond_broadcast() function shall unblock all threads currently

blocked on the specified condition variable cond.

The pthread_cond_wait() function shall block on a condition variable. It shall

be called with mutex locked by the calling thread or undefined behavior

results.

It atomically releases mutex and causes the calling thread to block on the

condition variable cond; atomically here means "atomically with respect to

access by another thread to the mutex and then the condition

variable". That is, if another thread is able to acquire the mutex after

the about-to-block thread has released it, then a subsequent call to

pthread_cond_broadcast() or pthread_cond_signal() in that thread shall behave as

if it were issued after the about-to-block thread has blocked.

3



Upon successful return, the mutex shall have been locked and shall be owned by

the calling thread.

When using condition variables there is always a Boolean predicate involving

shared variables associated with each condition wait that is true if the

thread should proceed. Spurious wakeups from the pthread_cond_wait() function

may occur. Since the return from pthread_cond_wait() does not imply

anything about the value of this predicate, the predicate should be re-evaluated

upon such return.

排他制御関係:

SYNOPSIS

int pthread_mutex_init(pthread_mutex_t *restrict mutex,

const pthread_mutexattr_t *restrict attr);

int pthread_mutex_lock(pthread_mutex_t *mutex);

int pthread_mutex_unlock(pthread_mutex_t *mutex);

The pthread_mutex_init() function shall initialize the mutex

referenced by mutex with attributes specified by attr. If attr is

NULL, the default mutex attributes are used; the effect shall be the

same as passing the address of a default mutex attributes

object. Upon successful initialization, the state of the mutex

becomes initialized and unlocked.

The mutex object referenced by mutex shall be locked by calling

pthread_mutex_lock(). If the mutex is already locked, the calling

thread shall block until the mutex becomes available. This operation

shall return with the mutex object referenced by mutex in the locked

state with the calling thread as its owner.

The pthread_mutex_unlock() function shall release the mutex object

referenced by mutex. The manner in which a mutex is released is

dependent upon the mutex’s type attribute. If there are threads

blocked on the mutex object referenced by mutex when

pthread_mutex_unlock() is called, resulting in the mutex becoming

available, the scheduling policy shall determine which thread shall

acquire the mutex.

4



3

OSのスレッド (プロセス)スケジューラに関する以下の会話を読んで, その後の問いに答えよ.

加藤: 今日OSの授業でスレッドのスケジューリングについて習ったんだけど, 俺には何が難しいのかよくわか
らなかったな.

松尾: おうそらどうして?

加藤: 全部のスレッドを一定時間ずつ, 代わりばんこに実行させる. 以上. これ以上何が必要なの?

松尾: それですんだら楽だよな. いったいそのマシンにはいくつのスレッドがあると思う?

(加藤は (1)プロセスのリストを表示するコマンドを実行させて数える)

加藤: ざっと見て, プロセスが 50個はあるな. ということは少なくとも 50のスレッドがあるということか. こ
んなに自分で立ち上げた覚えはないんだけど. . .

松尾: お前の言う通りだとすると, お前が演習で作ったソーティングのプログラムも, CPU本来の速度の 1/50
くらいで動いていたのか?

加藤: もしそうだったら. . .悔しいです!

松尾: 演習のプログラムを走らせる時にはエディタ, ブラウザ, メールソフトを全部止めなきゃいけないとした
ら不便だし, 第一もったいないよな.

加藤: そうか, 思い出した. そういえばスレッドには (2) という状態があって, その状態のスレッドには決し
て CPUが割り当てられないんだった.

松尾: そう, そしてさっきの 50個のプロセスのほとんどは (2) だったというわけ.

加藤: でも, だとしたら (2) でない状態, つまり (3) 状態のスレッドに一定時間代わりばんこに実行させ

る. 以上. これじゃダメ?

松尾: 代わりばんこというが, (4)スレッドが実行をしている途中に (2) になることがあるよね. そういう

場合その実行時間がどんなに短くでも代わりばんこ, つまり他のスレッドが一回ずつ実行するまで, その
スレッドは実行されないわけ? もしお前がそのスレッドだったらどう思う?

加藤: うーん. . .悔しいです!

松尾: だよな.

加藤: そうか, 思い出した. スレッドが「どのくらい CPU時間を使ったか」をもう少しこまめに把握してあげ
ればいいんだ. 各スレッドに一定時間の「貯金」をあげて, 実行時間にしたがって減らしていき, 0になっ
たら次の奴に切り替える. 0になる前に (2) になった人は, まだ貯金が残っているから, もう一度 (3)
状態に戻ったら実行を再開できる. 皆に貯金を同じだけ与えれば公平だ. できた!

松尾: ひとたび貯金が 0になったスレッドはどうなる? いつかまた貯金をあげないといけないね.

加藤: 全スレッド, いや, 全部の (3) 状態のスレッドの貯金が 0になったら, また同じ額だけの貯金をあげれ
ばいいんじゃないかな.

松尾: そのとき, (2) のスレッドにはまだ貯金が残っているかもしれない. それらのスレッドは, どうする?

加藤: 民主主義の国では, やはり他のスレッドと同じだけあげるのがいいと思います. つまり, そのとき存在し
ているスレッドすべてに, 一定量の貯金を与えます. コードで書けば,

5



for すべてのスレッド t:
tの貯金 += 一定値. . . (∗)

松尾: 確かにそうかもしれないが, 深刻な問題がある. さっき, ほとんどのスレッドは (2) であると言った

よね. だとすると, (5) . これはあまり望ましいとは言えない
よな.

加藤: うーん. . .悔しいです! じゃこうします. さっきの「そのとき存在しているスレッドすべてに一定額の貯
金を与える」かわりに, 「そのとき存在しているスレッドすべてを, 一定額の貯金にリセットする」. つ
まり, 貯金は一度すべて剥奪してその後で一定額の貯金を渡します. コードで書けば,

for すべてのスレッド t:
tの貯金 = 一定値 . . . (∗∗)

松尾: なるほどね. いわゆる「単年度会計」ってやつで, 余った額はすべて政府に返しなさいというやつね. だ
いぶいいんだけどもうひとひねりするともっと良くなる. それは公平で効率的というだけでなく, スケ
ジューラのもう一つの目標である「対話的プロセスの応答性の向上」に寄与するアイデアなんだけど.

加藤: そうか, 思い出した. コードで書けばこんな感じ

です.

(6)

松尾: そう. 実はそれが実質的には Linux 2.4スケジューラのやっていることなんだ.

加藤: なるほどねー. で, お前いつからそんなに OSに詳しくなったんだ?

松尾: いやー, ©©© ちゃんにOS教えてって言われちゃって, 必死で勉強したんだよ. おかげで今はラブラブ
なんだよ～～(注: あまり世の中にそういうことはない)

加藤: く, 悔しいです!

(1) 下線部 (1)について, そのようなコマンド・プログラムの例を具体例をあげよ.

(2) (2) に適切な言葉を入れよ.

(3) (3) に適切な言葉を入れよ.

(4) 下線部 (4)について, どのような場合にそうなるか, いくつかの例を示せ.

(5) (5) には直前で加藤が提案しているスケジューラの深刻な問題を説明する文章が入る. 考えて作文せよ.

(6) (6) に入るべき適切なコードの例を書け. それは (∗)や (∗∗)と同じくらい簡潔なコードであり, (∗)にあ
る深刻な問題を持たず, 対話的プロセスの応答性の向上に役に立つ. また, そのコードがそれらの性質を持つ理
由もあわせて書け.

問題は以上である

6


