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1:  char checksum_of file() {
2 int fd = open(F, O_RDONLY);
3 char s = 0;

4: int i;

5: char * a = malloc(N);
6 read(fd, a, N);

7 for (i =0;1i < N;it++) {
8 s += ali];

9}

10: return s;

11: }
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(checksum of file 00000000 0)00000. O0D000D0O0OO0D0O0OO0OO0ODO 2000000000
00 10000000000000. 000000 PCOOOOOO,0000 OS (UnixO Windows) O OO
gbO,00000000000000000bO0000bO00bO0O00Oo0obO0obOO0OobOOoboOooOooOooDa.

(h)Oooo NOOODOOOOOOOOOOOOOooooO? 000 N,0O000DO0OO0OO00OO0OO0O0OOOOoOooOn
goo.

(20000000000 0O000U0O0OO0O0OO0OOO. O0,00000000 (000, 00000000
00000)0000,00000000000000000000O0O00O00O0DO0OUOO.

(3) 000000000 mallecO read 0000000000000 OOODOOO0O0OOOOOOOOO. (1),
(2)0000000000. 0000 mallecO reed 00000000000 OOODOOO,(1)00C00OOO
oboCo.0b000o00o0oobooocobO0obob0oboonbogb. UnixOO,0000005, 600000000
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char * a = mmap(0, N, PROT_READ, MAP_PRIVATE, {d, 0);
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0)000000000000000,000000000000000000000000000.0000
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volatile int X = 0;
volatile int Y = 0;

P(arg) {

-

C(arg) {

int t;
(x)XOOOYOUOoOODOOOODODOOOOOtOooOO;
t000000000000O0000O;

() OxXOOOYOoOoOUOOOOUOOOO tOOOUOOOOODUODOOODUOOOODUOOOOOOO.

/¥*XO000YODOoOOUODODOOOODOOOO0ODt00000;...(x)*/
int t;

while (1) {

t =X

if (¢t != 0) break;

t=7Y;

if (t != 0) break;

obooooOoboooobooboooo,ooobooocobo. cooobooon.

(2)00000000000000O0 OSUUODUOUUO0UOOUDOUOOUOOUOOOO. Oooo
gooobooobooboobooboon.
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SYNOPSIS
int sem_init(sem_t *sem, int pshared, unsigned int value);
int sem_wait(sem_t *sem);
int sem_post(sem_t *sem);

DESCRIPTION
sem_init() initializes the unnamed semaphore at the address pointed to by sem.
The value argument specifies the initial value for the semaphore.

The pshared argument indicates whether this semaphore is to be shared between
the threads of a process, or between processes.

If pshared has the value O, then the semaphore is shared between the threads of
a process, and should be located at some address that is visible to all threads
(e.g., a global variable, or a variable allocated dynamically on the heap).

sem_wait() decrements (locks) the semaphore pointed to by sem. If the
semaphore’s value is greater than zero, then the decrement proceeds, and
the function returns, immediately. If the semaphore currently has the
value zero, then the call blocks until either it becomes possible to
perform the decrement (i.e., the semaphore value rises above zero), or a
signal handler interrupts the call.

sem_post() increments (unlocks) the semaphore pointed to by sem. If the
semaphore’s value consequently becomes greater than zero, then another
process or thread blocked in a sem_wait(3) call will be woken up and
proceed to lock the semaphore.
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SYNOPSIS
int pthread_cond_init(pthread_cond_t #*restrict cond,
const pthread_condattr_t *restrict attr);
int pthread_cond_broadcast(pthread_cond_t *cond) ;
int pthread_cond_wait(pthread_cond_t #*restrict cond,
pthread_mutex_t *restrict mutex);

DESCRIPTION
The pthread_cond_init() function shall initialize the condition variable
referenced by cond with attributes referenced by attr. If attr is NULL,
the default condition variable attributes shall be used; the effect is
the same as passing the address of a default condition variable
attributes object. Upon successful initialization, the state of the
condition variable shall become initialized.

The pthread_cond_broadcast() function shall unblock all threads currently
blocked on the specified condition variable cond.

The pthread_cond_wait() function shall block on a condition variable. It shall
be called with mutex locked by the calling thread or undefined behavior
results.

It atomically releases mutex and causes the calling thread to block on the
condition variable cond; atomically here means "atomically with respect to
access by another thread to the mutex and then the condition

variable". That is, if another thread is able to acquire the mutex after

the about-to-block thread has released it, then a subsequent call to
pthread_cond_broadcast() or pthread_cond_signal() in that thread shall behave as
if it were issued after the about-to-block thread has blocked.



Upon successful return, the mutex shall have been locked and shall be owned by
the calling thread.

When using condition variables there is always a Boolean predicate involving
shared variables associated with each condition wait that is true if the

thread should proceed. Spurious wakeups from the pthread_cond_wait() function
may occur. Since the return from pthread_cond_wait() does not imply

anything about the value of this predicate, the predicate should be re-evaluated
upon such return.
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SYNOPSIS
int pthread_mutex_init(pthread_mutex_t *restrict mutex,
const pthread_mutexattr_t *restrict attr);
int pthread_mutex_lock(pthread_mutex_t *mutex);
int pthread_mutex_unlock(pthread_mutex_t *mutex) ;

The pthread_mutex_init() function shall initialize the mutex
referenced by mutex with attributes specified by attr. If attr is
NULL, the default mutex attributes are used; the effect shall be the
same as passing the address of a default mutex attributes

object. Upon successful initialization, the state of the mutex
becomes initialized and unlocked.

The mutex object referenced by mutex shall be locked by calling
pthread_mutex_lock(). If the mutex is already locked, the calling
thread shall block until the mutex becomes available. This operation
shall return with the mutex object referenced by mutex in the locked
state with the calling thread as its owner.

The pthread_mutex_unlock() function shall release the mutex object
referenced by mutex. The manner in which a mutex is released is
dependent upon the mutex’s type attribute. If there are threads
blocked on the mutex object referenced by mutex when
pthread_mutex_unlock() is called, resulting in the mutex becoming
available, the scheduling policy shall determine which thread shall
acquire the mutex.
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