
平成 18年度オペレーティングシステム期末試験

2007年 2月 5日

問題は 3問，7ページある．

1

スレッド間でデータ (簡単のため，int型の整数とする) を受け渡しするキュー (Queue)を操作する二つの手

続き getと putがあるとする．

• get(q)はキュー qからデータを一つ取り出す．もちろん空のキューからデータを取り出すことはできな

い．その場合，データが putによって一つ挿入されるまでブロックする．

• put(q, x)はキュー qに一つのデータ xを挿入する．キューには一定の容量 cがあり，満杯のキューに

データを挿入することはできない．つまり，qにデータがすでに c個格納されていれば，一つのデータが

getによって取り出されるまでブロックする．

以下の問いに答えよ．

(1) 簡単のために c = 1とした上で，以下の構造体や関数定義の · · · 部分を補う形で，(容量 1の)キューの

実現方法を書け．スレッドの同期のための標準的な API (排他制御，条件変数など)を適宜用いよ．プロ

グラムは C言語風の擬似コードで書くことを想定しているが，厳密な文法や APIの用法 (引数の数や順

番など)にはこだわらないので，適宜文章で説明を補え．

typedef struct

{
int n; /* 格納されているデータ数．0または 1 */

int data; /* n=1のとき，格納されているデータ */

· · ·
} * Queue;

void put(Queue q, int x) {
· · ·

}

int get(Queue q) {
· · ·

}

1

以下では一般の cに対するキューの実装が与えられているとし，それを用いて二つのスレッドA,Bの間で多

数のデータを両方向に送りあうことを考える．二つのキューQA→B , QB→Aを用意し，前者はAからBへ，後

者はBからAへデータを転送するのに用いる．スレッドAの送るべきデータ (n個あるとする)を a0, . . . , an−1,

スレッド B の送るべきデータ (m個あるとする)を b0, . . . , bm−1 と書く．

以下は，この目的を達成するために書かれたプログラムであるが，間違いがある (正しく動くとは限らない)．

thread A() {
for (i = 0; i < n; i++) {
put(QA→B, ai);

}
while (1) {
get(QB→A);

}
}

thread B() {
for (i = 0; i < m; i++) {
put(QB→A, bi);

}
while (1) {
get(QA→B);

}
}

(2) このプログラムには，デッドロックと呼ばれる状態に陥るという間違いがある．具体的にどういう状態

に陥るのかを説明せよ．

(3) 正しいプログラムを書け．概要と擬似コードの形で示せ．ただし，以下に注意せよ．

– 両スレッドは自分が送るデータの個数は知っているが，受け取るべき個数は知らないものとする．すな

わち，Aはmを知らず，Bはnを知らない．キューには，送るべきデータ (a0, . . . , an−1, b0, . . . , bm−1)

以外のものを入れてはならず，A,B がそれ以外の手段で通信することも許されない．

– 正しい終了状態は，両スレッドが受け取るべきデータをすべて受け取った上で，空のキューに対して

getを呼んでブロックしている状態であるとする．前項により，各スレッドはデータが何個来るかを

知らないので，「これ以上データが来ない」ということを検出することはできない．従って両スレッ

ドは通常の意味で終了 (thread A, thread Bからリターン)することはできないことに注意せよ．

2

2

以下はC言語によるプログラミングの演習を行っている学生二人の会話である．読んで以下の問いに答えよ．

学生A: さあできたぞ．

学生B: よし，走らせよう!

Aがプログラムを走らせると “segmentation fault”というメッセージを出してプログラムが終

了した1

% ./tauthon draw3D.py

Segmentation fault

%

学生A: Oh，shit!

学生B: 欧米か! さっさとデバッグしろよ．

学生A: だいたい segmentation faultって何だよ?

学生B: Segmentation faultってのはな，要するに (a) な (b) をした時に出るものなんだよ．OSの授業

でやっただろ?

学生A: (a) だと，人聞きの悪い．いったい俺がどこで (a) をしたっていうんだ?

学生B: 確かに (a) という言葉はまるで悪いことでもしたみたいでびっくりするけど，なぜかそういう言葉

を使うんだよ．それはさておき，segmentation faultがどこで起きたかを調べるには，gdbとか，デバッ

ガを使うのが早いんだよ．ほら，gdb ./tauthon ってやってみ．

Aは言われたとおりタイプして gdbデバッガを立ち上げる．

% gdb ./tauthon

...

(gdb)

学生B: 立ち上がったら次は，runコマンドだ．それでプログラムが走り出す．

Aは言われたとおり入力してプログラムを走らせる．すると以下のように，segmentation fault

がおきた旨のメッセージとともに，次のような表示が出た．

(gdb) run

Starting program: /home/tau/tauthon

Program received signal SIGSEGV, Segmentation fault.

0x08048364 in foo () at a.c:24

24 f(p, &q->x, r->next, s.x, t.next, u.next->x);

ただし，p, q, r, s, t, uはそれぞれ以下のように定義されている局所変数であるとする．

fはこのプログラムの中で定義されている関数の名前である．

1 プログラムや引数の名前はフィクションであり，実在のものとは一切関係ありません

3

int foo()

{

list * p;

list * q;

list * r;

list s;

list t;

list u;

...

...

}

listは以下のような構造体である．

typedef struct list {

int x;

struct list * next;

} list;

学生B: どれどれ，なるほど，これはこの行f(p, &q->x, r->next, s.x, t.next, u.next->x); を実行し

ている最中のどこかで， (a) な (b) を起こした，ということを表しているんだ．

学生A: 俺には何がなんだか．(といって，肩をすくめる動作をする)

学生B: 欧米か! 大事なのは，並んでいる引数，pとか，&q->xとか，. . .の中で (a) な (b) を起こしたの

はどの式か，ということだ．もちろん君は segmentation faultが何かを知らなかったくらいだから，この

プログラムの中でmprotectとかなんとか，難しいシステムコールは使ってないよね．

学生A: 後半が何を言っているのかは全然わかんなかったけど要はあまり深く気にしなくていいってことで．

じゃあ，どの式かって言うと，うーん，俺にはわからないから，B君どうぞ．

学生B: しょうがないなぁ． (c) と (d) あたりかな．C言語の仕組みをちょいとわかってればわかるはず

なんだけどな．

学生A: で，実際に確かめるにはどうすればいいの?

学生B: デバッガには，式の値を表示するprintってコマンドがあるんだ．とりあえずこれは試験問題だから

あまり余計なヒントにならないよう「全部の変数の値を表示してみよ」と言っておこう．

Aは次のようにコマンドを打ち込んで以下のような出力を得る．

(gdb) print p

$1 = (list *) 0x0

(gdb) print q

$2 = (list *) 0x100

(gdb) print r

$3 = (list *) 0x200

(gdb) print s

$4 = {x = 300, next = 0x400}

(gdb) print t

$5 = {x = 500, next = 0x600}

4

(gdb) print u

$6 = {x = 700, next = 0x800}

学生B: ま，初歩的なミスをしたということだね．これを見る限り僕の言ったとおり (c) と (d) の両方と

も，segmentation faultをおこすね．それは上のprintの結果を見れば明らかだね．

学生A: 俺にはなーんにも明らかじゃありません．

学生B: 基本から説明するからよく聞くように． (e) . ちなみに，こ

ういうことになってしまった原因は大方， (c) や (d) へちゃんとした値を代入してないことじゃな

いかと思うけどね．どれどれ (プログラムを見る), あーやっぱり．

学生A: えーとつまり，そいつらに何かを代入すれば言い訳ね．じゃ，こんなのはどう?

foo() {
· · ·

· · ·
(c) = 10000;

(d) = 20000;

· · ·
}

学生B: そんな滅茶苦茶な. . .ひょっとしたら segmentation faultはおきなくなるかもしれないが，適当な数を

代入すればいいというものじゃないんだよ!

学生A: あー，そういえば，Cには&とかいう演算子があったっけ．そうか．えーっと，じゃ，まずはこういう

関数を作って，

list * alloc_list() {

list l;

return &l;

}

こういう風にしたら?

foo() {
· · ·

· · ·
(c) = alloc_list();

(d) = alloc_list();

· · ·
}

学生B: これで確かに segmentation faultはおきなくなるかもしれないが，残念ながらそれも駄目．その理由

は， (f) .

5

学生A: うーん，じゃ，lを大域変数にして，これは?

list l;

list * alloc_list() {

return &l;

}

foo() {
· · ·

· · ·
(c) = alloc_list();

(d) = alloc_list();

· · ·
}

学生B: うーん，これも駄目だね．その理由は， (g) . 要するに君は

C言語のメモリ管理というものについて，まったくわかっとらんようだねぇ．

学生A: わかったから．で，結局どうすればいいの?

学生B: この場合は結論から言うと，C言語の標準的なライブラリに含まれる (h) というを使えばよい．こ

の関数は要するに， (i) ．わかったかな．

学生A: わかりました．これまでは segmentation faultっていうのがおきると，ともかくプログラムがどっか

で間違っているという以外にはわからずに闇雲にプログラムを眺めていたんだが，要するにどういうと

きに segmentation faultがおきるのかってのをちゃんと理解すると，だいぶプログラミング能力ってい

うか，プログラムの問題解決能力が向上するんだね．

学生B: 少しは教えた甲斐があった．じゃあ，お疲れってことでなんか食いに行こうぜ．何にしようか?

学生A: チェリーパイ!

学生B: 欧米か!

以下の問いに答えよ．

(a), (b) に入る言葉を答えよ．

(c), (d) には，f(p, &q->x, r->next, s.x, t.next, u.next->x); に並ぶ引数のうちのどれかが入る．そ

れらを答えよ (順不同)．

(e) には，(c)または (d)が segmentation faultを起こす原因であるということを Bが結論付けるための推論

が入る．それは，C言語の基本的知識として，どんな式がどのような時に segmentation faultを起こし

うるのか・起こしえないのか，に関する説明が入る．自分なりの説明を数行で書け．

(f), (g) には，それぞれ直前で示されたalloc_list関数が正しくない理由が入る．自分なりの説明を数行で

書け．

(h) にはよく使われる C言語の標準的なライブラリ関数の名前，(i)にはその動作の基本的な説明，これまで

の間違った修正方法と何が違うのかの説明が入る．(h)に適切な名前と，(i)に入る説明を書け．

6

3

OSは，CPUが備えているMMU (メモリ管理ユニット)を用いて，様々な機能や，性能の向上を実現してい

る．そのうち，以下であげるものについて説明し，その実現方法の概要を述べよ．さらに，ここで述べられて

いない機能，または性能の向上を一つあげ，同様の説明を行え．

• プロセスの論理アドレス空間の分離 (メモリの保護)

• 要求時 (demand)ページング

• mmapシステムコールによるファイルの読み書き

問題は以上である

7

