o 1vgooboobobuooobuoogd

20060 200 130

gboo3oos8sunpbogonon

1

Linux, FreeBSD, Solaris 0 000 Unix 0000 O00000CO0O00OOOO0OOODOO0OODOOOOODOOOOOO
O forkO execve (000O00)000000000OO0OOO0OOODO “"00000000000DOOOOOOOOOO
OO0000 forkO exeeve 000000000000 DOOOO0ODOOOOODOOOODOOOODOOOODOODO

int pid = fork();
if (pid == 0) {

char * argv[]

{ "/bin/1s", 0 };

char * envp[] = { 0 };
execve("/bin/1s", argv, envp);
} else {
}

Unix000O00O0O00O0OO0O0O0O0OO0(1) 0000000000000 0, (2)00000000000UO0ODO0O0OO
oooooooooOoboooooooooboooooooD?OooOOODOO0O0O0O0OODOOOOOOOObOOoODOOD
OO000CO000DODOO00DOO0O00OforkO execve DO0O0DOOOO0OOOOOODOOOODODOOODOOOOOODO
oooooooooboo

fork 00000000 (00O)

NAME
fork - create a child process
SYNOPSIS
#include <sys/types.h>
#include <unistd.h>
pid_t fork(void);
DESCRIPTION

fork creates a child process that differs from the parent process only in its PID and PPID,
and in the fact that resource utilizations are set to 0. File locks and pend- ing signals
are not inherited.

RETURN VALUE
On success, the PID of the child process is returned in the parent’s thread of execution,
and a O is returned in the child’s thread of execution. On failure, a -1 will be returned
in the parent’s context, no child process will be created, and errno will be set
appropriately.

execve 10000000 (ODO)

NAME
execve - execute program

SYNOPSIS
#include <unistd.h>

int execve(const char *filename, char *const argv [], char *const envp[]);

DESCRIPTION
execve() executes the program pointed to by filename. filename must be either a binary
executable, or a script starting with a line of the form "#! interpreter [arg]".

argv is an array of argument strings passed to the new program. envp is an array of
strings, conventionally of the form key=value, which are passed as environment to the new
program. Both, argv and envp must be terminated by a null pointer. The argument vector and
environment can be accessed by the called program’s main function, when it is defined as int
main(int argc, char *argv[], char *envp[]).

execve() does not return on success, and the text, data, bss, and stack of the calling
process are overwritten by that of the program loaded. The program invoked inherits the
calling process’s PID, and any open file descriptors that are not set to close on exec.

RETURN VALUE
On success, execve() does not return, on error -1 is returned, and errno is set
appropriately.

2

00000oooO0o0o0oooOo0o00ooO0 (boo0o0LO)00Do0oOo000oOOoOo0D0DOoOoDOOoOoDOOoooOO
Ub0oobooboooboobOo0ooobooobOoobOon producerJ00000O00O0O00OOOOODOOOOONO
000000000000000000000000000000 (putdatal00)000OO00O0O0OO0OO0OOOOOO
0000 consumer O U0DO0OO0O0OD0O0OD0O0O0OO0OOODOO0DOODOOOOODODOOODOODOODODODOO
00 (getdata00)JOO00OODO putdata/getdata 0000 0000000000000 0OOO0Orandom() 00O
0 (00)0000000000000000U0O0O000O000O0O0U0OD0O0O0OO (lnsO0)O0OO0OOUOOOOO
gbboobooaboogboobooboboobooboobooboobobboboobodlconsumer U OO

100,0000 0 00000000000000O0O00O0O0OO0O0O0O0OOO0O0OOO0O0O0OOO0O0OOO0O0O00O00
/ 0000000 =/

void consumer() {
/* 0000000 @oOOog) =/

int 1i;
void producer() {
]] for (i = 0; /* true */; i++) {
int 1i;
getdata();

for (i = 0; /* true */; i++) { if (i % 100000 0 {
1 1 A 3

putdata(random()) ;
fprintf (stderr, "progress: i = %d\n", i);

obooooobO NOOOOO 0000000000000 O00O0OO0OO0O0OOOOOO0OO0DOO0DOOOODOO0
ooooooboooooooboooogoobooboooboooooooobb0 pOODODOODODOObOObOOObObOOD
0000 (0000000000000 000000000000O000O0)0000000 ¢g0ODODO0OUO0O0
O00D0o00400000000000e, NODOOOOOODOOODOOODOOOOODOOOOp, g0 00000
oboocooOobooooboobodp, 0000000 DbOO0OO0OO0O0ODO0ObOOOOODbOO0On

/* 0000 =/

int * a; /* a=000000000 =%/
int N; /x 00000 %/

volatile int p; / 0000000000000 =/
volatile int ¢; /¥ 000000000000 =/

gboboobooboooboobobooobooboooooboobooobooboboooonog

0((000): 000000000000000000000000000O ¢UDDO0U0O000O000O0OUOO0O0OOOO
gbodpboobOobbOobboOoboonbd

int getdata() {

void putdata(int c¢) { int c;
alg h N1 = c; c=alp % NI;
q++; pt;
} return c;
}

gbb: gbgobobooooboboboboobobooboboobobooboboobobooobabaonoo
gboogbooboobobboobooboobooboobooooboboobooboobooobo

O: 0000000000000000000O00C00O0000O000OO APIDOOODOOODOOOODOOODOOO
gobgoobboobboboobboobbobooooboobobbooooboooooouubg g—p=00
Oooo0ooObo0o0oDbDbo0o0boD g—p=NOOOOODDOOOODOOO

int getdata() {

void putdata(int c¢) { int c;
while (¢ - p >= N) /* do nothing */ ; while (¢ - p == 0) /* do nothing */ ;
alg % N1 = c; c=ualp % NI;
q++; pt+;
} return c;
}

gobo: gobobboobooboobooboobooboobonoobo

D:DDDDDDDD’ (a) ‘DDDDDDDDDDDDDDDDDDDDDD
ooooboooooao

gbb: gbodgobobooboboobobooboboobobooboboobobooboboabaonoo
goo0ooooUooooOooooooooooooooooooo?

0: DD
000: 00000000000 00000000000000000000000!

0: 000
00000 API (lock/unlock) 000000000000

/+ 00000000000 M@OOO)ooOoOodOo =/ int getdata() {
pthread mutex_t M = PTHREAD_MUTEX_INITIALIZER; int c;
void putdata(int c) { while (¢ - p == 0) /* do nothing */ ;
while (¢ - p >= N) /* do nothing */ ; pthread mutex _lock(&M);
pthread mutex lock(&M); c =alp % NI;
alg % N1 = c; P
q++; pthread mutex unlock(&M) ;
pthread mutex unlock(&M) ; return c;
} }

000: 000()00 | (b) |D00000

g: 0bogbooboobooboobuoobooobobboboobooboobooboon

int getdata() {

void putdata(int c) { int c;
pthread mutex_lock(&M) ; pthread mutex_lock(&M) ;
while (¢ - p >= N) /* do nothing */ ; while (¢ - p == 0) /* do nothing */ ;
alg % N1 = c; c =alp % NI;
g+ pH;
pthread mutex unlock(&M) ; pthread mutex unlock (&M) ;
} return c;
}

ooo: DDDDDDDDDDDDDDDDDDDDDDDDDDD DDDDDDDDDDDD

O: (000000)0000000Oprogress: i = 000000000000000O00O0O0OOO0O0OOOOOO
ooo0: 0000 oSsgooooooooooooooy

O: (00000OD0)..00000000000000000 lockODOODODOOUOODOOOUOOOUOOOOODOO
Oo0ooooooooooooo0ooooooo0o0ooooDoo0o00ooDOoD0000n unlockOodOd
0000000000000 00O0OwhileDOOODOOO lockOODOOOOODOOOODOOOODOOO

0o DDDDDDDDDDDDDDDDDDDDDDDDD

int getdata() {

void putdata(int c¢) { int c;
while (1) { while (1) {
pthread mutex_lock(&M) ; pthread mutex_lock(&M) ;
if (¢ - p < N) break; if (¢ - p > 0) break;
pthread mutex_unlock (&M) ; pthread mutex_unlock(&M) ;
¥
alg % N1 = c; c =alp % NI;
gt+; ptt;
pthread mutex_unlock (&M) ; pthread mutex_unlock (&M) ;
} return c;
}

oboobo: 0boooooooooooboooboooooooboooooboooobooooboooooooo NOOOoOoo
ooooobooboooogoo

O: 000000 N=1,000,0000000000000000000

gbObO:0boo0ooooooboboooboobooobooobo0 NyOOOoOooooooooooboooooo

oo NOOOOOOoOOooooooobobooooobooooooobooooboobbooboooooooooo
g0l100boo0ooboooboooooobooboooboobooboooboo NOODOODOOODOOODOObOOoOoOOoDboo

0000
200000 ‘ ‘
o
180000 - o -
160000 | AR
o
140000 o 4
120000 o © °o0
- O 4
238 o © o

performance 100000 |- o
80000 O &
9698
60000 -
&
40000 - o

20000 & .
0 | | | | | | | | |

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
buffer capacity (elements)

O: 00000NOOO0ODOOOODOOOODO
OoO00:.000oooogooo?

O: 000000@Uooo)ooooo! (e)

gbob:0booooboooobooboooobooooboobooooboon

O: 00obooocoboobooboooo...o0...000
gbscooooooooboooobooboooog

0: (HooOoooo

gboo: Jbogoboboboboobobobobooboboboboopmooooooooboooboooooo
ogoooooOoOoOOOOOOOOOOOODODODODODODOOO!Y

O: 00000000000000000000O0Doooooooo!

ooO0: 000000000000 1o0o0000000O0O0OOOOODODODDODODOO!
O: 000boooocooooo...

OO00: 0000000000 00ooo0oooogooD 1wwo0cogoooooo!

() 000000000000 UOO0O0OUODO0O0OO0O0U0OOO0O0OOO0O0OUDOO0O0OODOOODOODOOUOo
00000000000 (oooo)00o0DoO0oUoO0o0o0oOU0OoO0DDOoUDOOoOoOoD

() 000D00D00D000000000000000000000
() DODDOOD| (b) PODODOODO()0000000000
(d) 000000000000

() 0O0ODDOODUDOUOODUOONODODOOUOOOOOODOOOOOOODOOOOOOOOOOOOUO NO
goooboobooooo NODODOOOODOOOOOOobOOobOOoOooOOobOobbOOobDOoboobbs100o04
gooo

0000000000000000000O00oo0 1CPU(DL)OD0O0UDOOOOO

() 00000000000 O0O0ODo0DOoOOoUOooOoOooo

3

000 NDOOOOODOOO FOOOOOOOOO (\n)0000000000000000000000000
O000000000000O00000000 DDDDDDDD 2a0000000000000000000
0000000000000 00000000000000000

int count newlines() {
int fd = open(F, O_RDONLY);
char * a;
int s = 0;
int i;
| (P)
for (i = 0; 1 < N; i++) {

if (a[i] == ’\n’) s++;

}

return s;

000000000000000000 DIZIDDDDDDDDDDDDDDDDDDDDDDDDDDDD
00 fr0000000
000000 (000 109000000000000000000000000000000 (P)000000000
ooooooooo

0.8 ‘

0.7 - N

0.6 //A/.—////// —

0.5 - o _

T'[sec] 0.4

\
@
\

0.3+ o i

70

progress (x10°)
000000000000 64MBOOOOOOOOOO BI2MBOOOOOOOOOOOOOOODOOOOOOOO
O0o0o0o0ooooooooobooooo0ooooooooooobooooobooooono
0000000000000 000000b00b000b0 2000000000 2x2=4000000000000
4000000000000 0000O00O00O000OO0O0OO
oodooooooooooonbo 200:

O00 M: Unix mmap 000000000 Windows O MapViewOfFile APIODDOOO0OOOOOOOOOOOOD
gboogboobooboobooo

OO0OR: 0000000000 O0000000Cmalloc00D00O00D0O0O0DOO0O UnixOreaedOOOOOODO
O Windows 0 ReadFile APIODOO0O0OOOOOOOOOOOOOOOOOO

ooooooboz200:

oo cCc:oooogooooogooooooooooobooooobooooobooooDbooooDoobooooDoooo

OO0 w: Jooooboooooooboooooogoooboobboooobbooobooobobog catoobobono
booobooooboboooobobooooobooonoo

ubooaboodaod

() oo cooowoOOOUOOOOUOOOOoUOoOO0OOUOOOO0ODUOO0OODUOoOoOOoDUOooOOoOoUOo
oboooboboooboobooooboboooooboooobobooooboboboooboobooonoog

(2) 0000000000000 0000000000000000000000000000000000000
DDDDDDDDDDDDDDDDDDDDDDDDaDDDD for 00000000000 O0O0OO0
0000000000000 000000000000000000000000

(3 0000000 0UOO0OO0A,B,C,DOOO0OOOOOOOUOOOOOMOIOD R)ODOODOO(COOOW)DO
oboooboo0oobooboooobooooooonn

gbooooog

