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int pid = fork();
if (pid == 0) {

char * argv[]

{ "/bin/1s", 0 };

char * envp[] = { 0 };
execve("/bin/1s", argv, envp);
} else {
}
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fork 00000000 (00O)

NAME
fork - create a child process
SYNOPSIS
#include <sys/types.h>
#include <unistd.h>
pid_t fork(void);
DESCRIPTION

fork creates a child process that differs from the parent process only in its PID and PPID,
and in the fact that resource utilizations are set to 0. File locks and pend- ing signals
are not inherited.

RETURN VALUE
On success, the PID of the child process is returned in the parent’s thread of execution,
and a O is returned in the child’s thread of execution. On failure, a -1 will be returned
in the parent’s context, no child process will be created, and errno will be set
appropriately.

execve 10000000 (ODO)

NAME
execve - execute program

SYNOPSIS
#include <unistd.h>

int execve(const char *filename, char *const argv [], char *const envp[]);

DESCRIPTION
execve() executes the program pointed to by filename. filename must be either a binary
executable, or a script starting with a line of the form "#! interpreter [arg]".

argv is an array of argument strings passed to the new program. envp is an array of
strings, conventionally of the form key=value, which are passed as environment to the new
program. Both, argv and envp must be terminated by a null pointer. The argument vector and
environment can be accessed by the called program’s main function, when it is defined as int
main(int argc, char *argv[], char *envp[]).

execve() does not return on success, and the text, data, bss, and stack of the calling
process are overwritten by that of the program loaded. The program invoked inherits the
calling process’s PID, and any open file descriptors that are not set to close on exec.

RETURN VALUE
On success, execve() does not return, on error -1 is returned, and errno is set
appropriately.
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00 (getdata00)JOO00OODO putdata/getdata 0000 0000000000000 0OOO0Orandom() 00O
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100,0000 0 00000000000000O0O00O0O0OO0O0O0O0OOO0O0OOO0O0O0OOO0O0OOO0O0O00O00
/ 0000000 =/

void consumer() {
/* 0000000 @oOOog) =/

int 1i;
void producer() {
] ] for (i = 0; /* true */; i++) {
int 1i;
getdata();

for (i = 0; /* true */; i++) { if (i % 100000 0 {
1 1 A 3

putdata(random()) ;
fprintf (stderr, "progress: i = %d\n", i);
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/* 0000 =/

int * a; /* a=000000000 =%/
int N; /x 00000 %/

volatile int p; / 0000000000000 =/
volatile int ¢; /¥ 000000000000 =/
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0((000): 000000000000000000000000000O ¢UDDO0U0O000O000O0OUOO0O0OOOO
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int getdata() {

void putdata(int c¢) { int c;
alg h N1 = c; c=alp % NI;
q++; pt;
} return c;
}

gbb: gbgobobooooboboboboobobooboboobobooboboobobooobabaonoo
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int getdata() {

void putdata(int c¢) { int c;
while (¢ - p >= N) /* do nothing */ ; while (¢ - p == 0) /* do nothing */ ;
alg % N1 = c; c=ualp % NI;
q++; pt+;
} return c;
}

gobo: gobobboobooboobooboobooboobonoobo

D:DDDDDDDD’ (a) ‘DDDDDDDDDDDDDDDDDDDDDD
ooooboooooao

gbb: gbodgobobooboboobobooboboobobooboboobobooboboabaonoo
goo0ooooUooooOooooooooooooooooooo?

0: DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD
000: 00000000000 00000000000000000000000!

0: 000000000000000000000000000000000000000000000000000
00000 API (lock/unlock) 000000000000

/+ 00000000000 M@OOO)ooOoOodOo =/ int getdata() {
pthread mutex_t M = PTHREAD_MUTEX_INITIALIZER; int c;
void putdata(int c) { while (¢ - p == 0) /* do nothing */ ;
while (¢ - p >= N) /* do nothing */ ; pthread mutex _lock(&M);
pthread mutex lock(&M); c =alp % NI;
alg % N1 = c; P
q++; pthread mutex unlock(&M) ;
pthread mutex unlock(&M) ; return c;
} }

000: 000()00 | (b) |D00000

g: 0bogbooboobooboobuoobooobobboboobooboobooboon

int getdata() {

void putdata(int c) { int c;
pthread mutex_lock(&M) ; pthread mutex_lock(&M) ;
while (¢ - p >= N) /* do nothing */ ; while (¢ - p == 0) /* do nothing */ ;
alg % N1 = c; c =alp % NI;
g+ pH;
pthread mutex unlock(&M) ; pthread mutex unlock (&M) ;
} return c;
}
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int getdata() {

void putdata(int c¢) { int c;
while (1) { while (1) {
pthread mutex_lock(&M) ; pthread mutex_lock(&M) ;
if (¢ - p < N) break; if (¢ - p > 0) break;
pthread mutex_unlock (&M ) ; pthread mutex_unlock(&M) ;
¥
alg % N1 = c; c =alp % NI;
gt+; ptt;
pthread mutex_unlock (&M) ; pthread mutex_unlock (&M ) ;
} return c;
}
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000 NDOOOOODOOO FOOOOOOOOO (\n)0000000000000000000000000
O000000000000O00000000 DDDDDDDD 2a0000000000000000000
0000000000000 00000000000000000

int count newlines() {
int fd = open(F, O_RDONLY);
char * a;
int s = 0;
int i;
| (P)
for (i = 0; 1 < N; i++) {

if (a[i] == ’\n’) s++;

}

return s;
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