
平成 16年度オペレーティングシステム試験

2005年 2月 14日

問題は 3問，5ページある．

1

UnixやWindowsなどの現代的なオペレーティングシステムには，ファイルマッピング (メモリマップドファイル)と

いう機能が提供されている．参考までに，Unixでそれを行うシステムコールであるmmapのマニュアルページの抜粋

を次ページに掲載している．以下の問いに答えよ．

(1) このシステムコールを用いて，あるファイルの中身を読み込むプログラム片の概要を記せ．具体的にするために，

"my_file"というファイル中に含まれる改行記号 (’\n’)の個数を数えるプログラムを例にとって，擬似コードの

形で書け．ただし，ファイルの大きさ (N バイトとする)はあらかじめ与えられているとする．システムコールの

詳細な知識を要求しているのではないので，引数の順序や詳細などを忘れた場合は，自然言語で意図が分かるよ

うに書けばよい．また，エラー検査なども説明を簡単にするために省略してよい．

(2) 一般論として，mmapを用いてファイルの中身を読むのと，通常の open/readや fopen/freadを用いて読むのと

で，性能上どのような利害得失があるか．以下のようなパラメータの違いにより，どのような場合にどちらが優

れているかを，オペレーティングシステムの動作を踏まえた上で，理由とともに述べよ．

– ファイルの大きさ

– 搭載物理メモリ量

– 論理アドレス空間の大きさ

– ファイル全体の中でアクセスされる領域．その大きさやアクセスパターン

– そのファイルを同時期に読み込むプロセスの数

1



参考資料: mmapマニュアルページ

MMAP(2) Linux Programmer’s Manual MMAP(2)

NAME
mmap, munmap - map or unmap files or devices into memory

SYNOPSIS
#include <unistd.h>
#include <sys/mman.h>

void * mmap(void *start, size_t length, int prot , int flags, int fd, off_t offset);

DESCRIPTION

The mmap function asks to map length bytes starting at offset offset from the file (or
other object) specified by the file descriptor fd into memory, preferably at address
start. This latter address is a hint only, and is usually specified as 0. The
actual place where the object is mapped is returned by mmap. The prot argument
describes the desired memory protection (and must not conflict with the open mode
of the file). It has bits

PROT_EXEC Pages may be executed.

PROT_READ Pages may be read.

PROT_WRITE Pages may be written.

PROT_NONE Pages may not be accessed.

The flags parameter specifies the type of the mapped object, mapping options and
whether modifications made to the mapped copy of the page are private to the process
or are to be shared with other references. It has bits

MAP_FIXED Do not select a different address than the one specified. If the specified
address cannot be used, mmap will fail. If MAP_FIXED is specified, start
must be a multiple of the pagesize. Use of this option is discouraged.

MAP_SHARED Share this mapping with all other processes that map this object.
Storing to the region is equivalent to writing to the file. The file

may not actually be updated until msync(2) or munmap(2) are called.

MAP_PRIVATE
Create a private copy-on-write mapping. Stores to the region do not

affect the original file.

You must specify exactly one of MAP_SHARED and MAP_PRIVATE.

offset should ordinarily be a multiple of the page size returned by getpagesize(2).

2



2

次の文章を読んで後の問いに答えよ．

男: 「くそっ，またセグメンだよ」

バンッ（キーボードをたたく音）

男: 「あ，壊れちった．．．学校から借りてるコンピュータなのに．．．こら先生に怒られるわ．．．」

女: 「ご機嫌ななめのようね」

男: 「だってよう，このプログラムがさっぱり訳が分からないんだよ．ちゃんと動くときもあれば，間違った答えが出
るときもあれば，セグメンで落ちることもあるんだよ．提出の締め切りはもう 2週間後だっつうのに (注: B演習
の締め切りは 3/1とします)．おまけに今日はバレンタインデーだっつうのに」

女: 「それは○○君のプログラムがおかしなメモリアクセスをしているだけの話じゃなくて?」

男: 「いやだってさ，意外と落ちないときもあるんだよ」

女: 「ぷーっ，○○君は意外と分かってないんだね，コンピュータのこと．電気なのに」

男: 「カッチーン．．．あ，でもこないだなんか，最適化オプションをつけたとたんに動かなくなったよ．これってコン
パイラのバグだろ．他にも，デバッガで見てみたら，mallocの中でセグメン起こしてたり．これはmallocのバグ
だろ」

女: 「ふう．残念ながら○○君の私の中の評価は下がる一方だわ．そもそも Cのプログラムでセグメンテーションフォ
ルトって言うのはどういうときにおきるんだったかしら，言ってごらん」

男: 「(な，なんだよこの女王様みたいな口の利き方は．ま，これでバグが取れるなら，この場は我慢して従っとくか)
ええっと，配列の大きさを超えてアクセスしたときとか．．．です」

女: 「あー，その理解が甘いってゆってるの．もちろんそれでセグメンテーションフォルトがおきるときもあるけど，
常にそうなるとは限らないのよ」

男: 「．．．ええっと，あ，そうか，思い出してきたぞ．セグメンテーションフォルトは，『不正なメモリアクセスをした
ときにおきる』でどう？」

女: 「うん，まあ間違ってはいないけどほとんど意味のない文よね．そもそも『不正なメモリアクセス』っていうのが
どう決まるのかを理解しないと．じゃ，具体的に聞くけど，以下の (A)(B)(C)は全部，配列の大きさを 129バイ
トだけ超えてアクセスしてるんだけど，この中で一個だけ，まずセグメンテーションフォルトにならないもの
があるの．○○君にはどれだかわかるかな? Nはせいぜい数万くらいまで，と思って」

char a[N];
void work()
{

char b[N];
char * c = (char *)malloc(N);

a[N + 128] = 0; /* (A) */
b[N + 128] = 0; /* (B) */
c[N + 128] = 0; /* (C) */

}
int main()
{

char h[10000];
work();
exit(0);

}

男: 「ええとつまり，a は大域配列，b は局所配列，c は動的に割り当てられた配列ってわけだな．うーーーんっと，
です．」

女: 「．．．．ファイナルアンサー?」

男: 「はしゃぎすぎだよ．わかったから先行けよ」

3



女: 「ダーーーン．．．残念！答えは (1) です．」

男: 「ふーん，どうして?」

女: 「 (2) ．故に，このアクセスは，確かに配列のサイズを超えていても，オペレーティングシステムか
ら見たら『不正なアクセス』には分類されないのです」

男: 「こ，これからはセンセイと呼ばせていただきます．センセイ，質問があります．Javaの場合，配列のサイズを超
えたアクセスは必ず，ArrayIndexOutOfBoundsException として捕まえてくれるよね．」

女: 「そうね．Javaに限らずね．まあ言語の数から言ったら圧倒的にそっちの方が常識なんだけど」

男: 「僕は，Cでも同じようにしていてほしかったです!」

女: 「うーん，良い指摘だけど，Javaの場合，基本的には配列をアクセスするごとに，添え字がサイズ未満かどうか，
ソフトウェアでチェックをしているの．それは Cの配列アクセスと比べるとずいぶん遅いときもあるんだな」

男: 「でも，セグメンテーションフォルトがおきるということは，なんらかのチェックはソフトウェアによって入って
いるんでしょう? つまり，そのアクセスが『不正でないかどうか』の」

女: 「あらあらまた大きな勘違い．セグメンテーションフォルトがおきるかどうかは，ソフトウェアがチェックしてい
るのではないのよ．そのために CPUに備わっている仕組みを何と言うんだったかしら?」

男: 「あ， (3) です．．．そうか，ずいぶん複雑なことを CPUがやってくれているんだね」

女: 「よくできました．やればできるじゃないの．ところで，さっきの 3つのアクセスの中で， (1) 以外の残りの二
つについては，セグメンテーションフォルトがおきるかどうかはOS，言語処理系，ライブラリの実装次第と言う
ところがあって，なかなか予測するのは難しいのだけど，できればセグメンテーションフォルトを出してあげた
ほうが親切よね？」

男: 「ええーーっ，セグメンテーションフォルトなんて見たくもないんだけど」

女: 「あのねぇ．．．やればできるってほめて上げたばかりなのに．．．落ちようが落ちまいがバグはバグでしょう．セグメ
ンで落ちてくれるのと，しばらく走った後，関係ないところで不可解な挙動を示すのとどちらがいいの?」

男: 「．．．お，落ちてくれたほうがいいです」

女: 「でしょう．あなたの言うコンパイラの最適化オプションを変えると出るだとか，mallocの途中で落ちるとか言う
のも，結局そういう，本当はいけないアクセスが，セグメンできちんとつかまらずに突っ走ってしまっているだ
けの話なのよ」

男: 「わかりました．．．」

女: 「じゃあ質問に戻るけど，残りの二つについて，できれば確実にセグメンテーションフォルトがおきるようにしてあ
げるには，どういう風にしてあげたらよいと思う? もちろん，Cコンパイラを改造してソフトウェアで毎回チェッ
クを入れるというのは原理的には可能だけれど，今はそういうことではなく，もっと単純に」

男: 「はいセンセイ分かりません．お願いします」

女: 「ったく．たとえば (4) 」

男: 「そうかぁ，なんか，今日だけでコンピュータのメモリ管理についてずいぶん詳しくなったような気もするな．．．
あ，でも，結局バグがどこにあるかは全然わかってないんだけど．．．センセイ，お願いします」

女: 「あ，それは自分で突き止めなきゃ，演習なんだから．それはそうと気分転換に工場見学にでも行って来たらどう?
まだ事務に行けば間に合うみたいよ」

問:

• (1)に当てはまるのは (A), (B), (C)のいずれであるかを書け．

• (2)には，(1)に入った答えを選んだ根拠が入る．適切な文章を書け．

• (3)に適切な言葉を入れよ．また，この会話で話題になっていること以外に，(3)が持つ機能，それが OSの中で

果たしている役割を述べよ．

• (4)には，(1)で選ばなかったアクセスに対して，言語処理系，ライブラリ，OS の動作によって，セグメンテー

ションフォルトがおきるようにする一方法が入る．適当な文章を入れよ．

4



3

Aだけの時間計算をしては，B だけの時間休眠することを繰り返す以下のようなプロセスを考える．

int main(int argc, char ** argv)
{
while (1) {
double t0 = current_time();
while (current_time() - t0 < A) {
do_comp();

}
if (B > 0) sleep_a_little(B);

}
}

ここで，

• do_compは非常に短い時間 (せいぜい 1ms以下)，決してブロックしない計算をする関数であるとする．

• current_time()はかなり正確に (高々数 µ秒の誤差で)現在時刻を返す関数であるとする．

• sleep_a_little(B)は与えられた引数の時間，そのプロセスを休眠させる．ただし，実際に休眠から返るのは，

経過時間の後，そのプロセスが実際に OSによってスケジューリングされる時であることに注意．

以下のような (Linux 2.4風の)スケジューラを仮定する．CPUは一つであるとする．

• タイマ割り込み間隔 =10ms

• 各プロセスに，スケジューリングに用いられる「適合値」と呼ばれる整数が維持される．プロセスが生成された
直後は 10が割り当てられる．

• タイマ割り込み時には以下を行う．

– その時走っていたプロセスの適合値を 1減らす．その結果としてそのプロセスの適合値が 0になれば，(以

下に述べる)再スケジュールを行う．

– また，sleep_a_littleで指定された休眠時間が経過していないかどうかが検査され，そうならばそのプロ

セスを実行可能にした上で，やはり再スケジュールを行う．

• 再スケジュールは，すべての実行可能プロセスの中で適合値最大のものを次に実行する．

• ただしこのとき，すべての実行可能プロセスの適合値が 0であった場合，すべてのプロセスの適合値を次にした

がって再設定した上で再スケジュールを行う．

新適合値 =旧適合値 / 2 + 10

以下の問いに答えよ．

(1) B = 0 (つまり決して休眠しない)プロセスを二つ走らせた場合，何msごとにプロセスが切り替わるか

(2) A = 50ms, B = 50msとしたプロセスをひとつだけ走らせた場合，当然のことながらこのプロセスは，ほぼ 50%

の CPU時間を得ると予想される．しかし実際に測定をしてみるとそれより少し小さな値 (45% 程度)が観測され

た．なぜか? (他のプロセスによる影響はないものとする．つまり，このコンピュータにはこのプロセスしか走っ

ていない)

(3) (2)で述べたプロセス P と，B = 0としたプロセス Qをひとつずつ走らせた場合，P は長期間の平均としてだ

いたいどの程度の CPU時間を得ると予想されるか．(a) 33% よりかなり少ない, (b) 33%程度 (c) ほぼ 45%程度

((2)と同様), (d) 45% よりずっと多い，の中から選び，理由を述べよ．(a), (d)を選択した場合，それがだいた

いどの程度になるかもあわせて述べよ．

(4) A = 5000ms, B = 5000msとしたプロセス P ′ と Qを併走させた場合についてはどうか? 理由とともに応えよ．

問題は以上である

5


