
平成 13年度オペレーティングシステム試験

2002年 2月 5日

問題は 3問，4ページある．

1

今日の典型的な PC/ワークステーション用のオペレーティングシステムが提供する「保護機構」

について，その基本的な仕組みを以下の場合について論ぜよ．

1. ディスクやネットワークなどの入出力装置への，ユーザプロセスからの直接アクセスを禁ずる

仕組み

2. ユーザプロセスが他のユーザプロセスのメモリを参照・破壊するのを禁ずる仕組み

3. ユーザプロセスが，CPUを独占利用するのを禁ずる仕組み

いずれの場合も，

• ハードウェア (CPU)によって提供される機能

• ソフトウェア (オペレーティングシステム)がそれをどのように利用しているか

を区別しながら簡潔に述べよ．

2

ワトスンは悩んでいた．ワトスンは，オペレーティングシステムが提供する通信プリミティブを

使って，同一のコンピュータ上で通信する二つのプログラム Pと Cを走らせていた．その主要部分

のコードは以下のようになっていた．

次ページへ続く

1



P:

P0: char data[DATA_SZ]; ack[1];

...

P1: for (i = 0; i < 100; i++) {

/* データを，配列 dataに書き込む */

P2: produce_data(data);

/* dataの中身を Cに送信する */

P3: send(s, data, DATA_SZ, 0);

/* C4で送られる返答を待つ */

P4: recv(s, ack, 1, 0);

P5: }

C: (Pとは別のプログラム)

C0: char data[DATA_SZ]; ack[1];

...

C1: for (i = 0; i < 100; i++) {

/* P3で送られたデータを配列 dataに受け取る */

C2: recv(s, data, DATA_SZ, 0);

/* 受け取ったデータを処理 (消費)する */

C3: consume_data(data);

/* Pに終了を告げる */

C4: send(s, ack, 1, 0);

C5: }

各行の意図はコメントのとおりである．すなわちこのプログラム P と C を実行すると，「P が

produce dataを使って計算した結果を Cが受け取り consume data によって処理し，Pに終了通知

を返す」という処理が，100回繰り返される．

このプログラムはそこそこ順調に動いていたが，貪欲なワトスンはある日，「Pと C はどうせ同じ

コンピュータで走るのだから，スレッドと共有メモリを用いて書き直せば今よりずっと速くなるに

違いない」と思うに至った．しかし，期待した結果は得られなかった．以下はワトスンがこの謎解

きをする際に発した独り言である．君は名探偵ホームズとなってワトスン君が何を勘違いしている

のかを教えてあげてほしい．

ワトスン：(なんということだ．私のコンピュータの知識によれば，スレッドと共有メモリを用い

たプログラム同士の通信は，わざわざソケット (上記の send/recv)を呼ばねばならない通信方式よ

りもよりも速いはずなのに．結果は，ええっと，もともとのプログラムが 561msなのに，新しいプ

ログラムでは 3965 msもかかっている．)

ワトスンは以下の新しいコードを眺めながら頭をかきむしっている．

次ページへ続く

2



/* 共有メモリ */

Q1: volatile int n_in = 0;

Q2: volatile int n_out = 0;

Q3: volatile char data[DATA_SZ];

/* producerスレッド */

Q4: producer() {

Q5: for (i = 0; i < 100; i++) {

/* consumerが Q15を実行するまで待つ */

Q6: while (n_in > n_out) { /* なにもしない */ }

/* データを共有メモリ dataに書く */

Q7: produce_data(data);

/* 書いたことを知らせる (Q13を参照) */

Q8: n_in++;

Q9: }

Q10: }

/* consumerスレッド*/

Q11: consumer() {

Q12: for (i = 0; i < 100; i++) {

/* producerが Q8を実行するまで待つ */

Q13: while (n_in == n_out) { /* なにもしない */ }

/* 共有メモリ dataからデータを読む */

Q14: consume_data(data);

/* 処理の終了を知らせる (Q6を参照) */

Q15: n_out++;

Q16: }

Q17: }

ホームズはワトスンを背にしながらタバコをふかしていた．そしてしばらくしてつぶやいた．

ホームズ「教科書の 164ページを読みたまえ」

ワトスン「なんだって!? ホームズ，君は僕のコードを一行も見ていないじゃないか」

ホームズ「または君のプログラムを君の安いラップトップではなく，私のサーバで動かしたまえ」

ワトスン「し，しかしサーバといっても CPUは同じ Pentium，クロックがわずかに違うだけ．速

くなるといってもせいぜい数十パーセントの違いじゃないだろうか?」

ホームズ「その二つの機械にはもっと決定的な違いがあるのだよ．おそらく私のサーバで実行す

れば，10倍以上は速くなるだろう」

ワトスン「. . .さっぱりわからないな，ホームズ，いつも君はそうやって. . .」

ホームズの変わりにあわれなワトスン君に事情を説明せよ．

• なぜ書き換えたプログラムは，元のプログラムよりも圧倒的に遅いのか?

• なぜ書き換えたプログラムは，サーバマシンで実行すれば 10倍以上速くなるのか? このサー

バは，ラップトップと何が「決定的に」違ったのかを予想してみよ．

3



3

(1) 以下のプログラムを，Nの値を様々に変えて実行することを考える．ただし，PAGESIZEはペー

ジの大きさである．

char a[N * PAGESIZE];

while (1) {

for (i = 0; i < N; i++) {

a[i * PAGESIZE]++;

}

}

オペレーティングシステムが正確な LRUページ置換アルゴリズム (つまり，ページ置き換えの際

に，最後に使われたのが最も遠い過去であるようなページを置き換える)を用いているとする．この

計算機が持つ物理ページ数を P とする．Nを 1から P を超えて十分大きくした際の，このプログラ

ムのページフォルト率 (1メモリアクセスがページフォルトを起こす確率)をグラフに描け (横軸 N,

縦軸がページフォルト率)．結果だけでなく，そうなる理由の説明も書くこと．

ただし簡単のため，メモリアクセスは配列 aへの参照・更新についてのみ行われるものとする．つ

まり，このプログラムのそれ以外のメモリ参照はなく，他のプロセスやオペレーティングシステム

によるメモリ参照も無視するものとする．

(2) 同じことを，ランダムページ置換 (ページ置き換えの際に置き換えるページを，一様乱数によ

り選択する)について行え．

(3) このプログラムに対しては明らかに LRUはランダムページ置換に劣っている．にもかかわら

ず，多くのオペレーティングシステムで，LRUを近似するようなアルゴリズムが用いられている．

これはどのような考えに基づくものか論ぜよ．

4


